近似逆极限和(m,n)维

Pub Date : 2020-06-12 DOI:10.3336/gm.55.1.11
M. Lynam, L. Rubin
{"title":"近似逆极限和(m,n)维","authors":"M. Lynam, L. Rubin","doi":"10.3336/gm.55.1.11","DOIUrl":null,"url":null,"abstract":"In 2012, V. Fedorchuk, using m-pairs and n-partitions, introduced the notion of the (m, n)-dimension of a space. It generalizes covering dimension. Here we are going to look at this concept in the setting of approximate inverse systems of compact metric spaces. We give a characterization of (m,n)-dimX, where X is the limit of an approximate inverse system, strictly in terms of the given system.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximate inverse limits and (m,n)-dimensions\",\"authors\":\"M. Lynam, L. Rubin\",\"doi\":\"10.3336/gm.55.1.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2012, V. Fedorchuk, using m-pairs and n-partitions, introduced the notion of the (m, n)-dimension of a space. It generalizes covering dimension. Here we are going to look at this concept in the setting of approximate inverse systems of compact metric spaces. We give a characterization of (m,n)-dimX, where X is the limit of an approximate inverse system, strictly in terms of the given system.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.55.1.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.55.1.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

2012年,V. Fedorchuk利用m对和n分区,引入了空间(m, n)维的概念。它概括了覆盖维数。这里我们将在紧度量空间的近似逆系统的背景下研究这个概念。我们给出了(m,n)-dimX的一个特征,其中X是一个近似逆系统的极限,严格地用给定系统表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Approximate inverse limits and (m,n)-dimensions
In 2012, V. Fedorchuk, using m-pairs and n-partitions, introduced the notion of the (m, n)-dimension of a space. It generalizes covering dimension. Here we are going to look at this concept in the setting of approximate inverse systems of compact metric spaces. We give a characterization of (m,n)-dimX, where X is the limit of an approximate inverse system, strictly in terms of the given system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信