具有协调访问频带的蜂窝网络的最优启发式和基于q学习的DSA策略

H. Kamal, M. Coupechoux, P. Godlewski, J. Kélif
{"title":"具有协调访问频带的蜂窝网络的最优启发式和基于q学习的DSA策略","authors":"H. Kamal, M. Coupechoux, P. Godlewski, J. Kélif","doi":"10.1002/ett.1456","DOIUrl":null,"url":null,"abstract":"Due to the increasing demands for higher data rate applications, also due to the actual spectrum crowd situation, Dynamic Spectrum Access (DSA) turned into an active research topic. In this paper, we analyse DSA in cellular networks context, where a Coordinated Access Band (CAB) is shared between Radio Access Networks (RANs). We propose a Semi-Markov Decision Process (SMDP) approach to derive the optimal DSA policies in terms of operator reward. In order to overcome the limitations induced by optimal policy implementation, we also propose two simple, though sub-optimal, DSA algorithms: a Q-learning (QL) based algorithm and a heuristic algorithm. The achieved reward using the latter is shown to be very close to the optimal case and thus to significantly exceed the reward obtained with Fixed Spectrum Access (FSA). The rewards achieved by using the QL-based algorithm are shown to exceed those obtained by using FSA. Higher rewards and better spectrum utilisation with DSA optimal and heuristic methods are, however, obtained at the price of a reduced average user throughput. Copyright © 2010 John Wiley & Sons, Ltd.","PeriodicalId":50473,"journal":{"name":"European Transactions on Telecommunications","volume":"106 1","pages":"694-703"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Optimal, heuristic and Q-learning based DSA policies for cellular networks with coordinated access band\",\"authors\":\"H. Kamal, M. Coupechoux, P. Godlewski, J. Kélif\",\"doi\":\"10.1002/ett.1456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the increasing demands for higher data rate applications, also due to the actual spectrum crowd situation, Dynamic Spectrum Access (DSA) turned into an active research topic. In this paper, we analyse DSA in cellular networks context, where a Coordinated Access Band (CAB) is shared between Radio Access Networks (RANs). We propose a Semi-Markov Decision Process (SMDP) approach to derive the optimal DSA policies in terms of operator reward. In order to overcome the limitations induced by optimal policy implementation, we also propose two simple, though sub-optimal, DSA algorithms: a Q-learning (QL) based algorithm and a heuristic algorithm. The achieved reward using the latter is shown to be very close to the optimal case and thus to significantly exceed the reward obtained with Fixed Spectrum Access (FSA). The rewards achieved by using the QL-based algorithm are shown to exceed those obtained by using FSA. Higher rewards and better spectrum utilisation with DSA optimal and heuristic methods are, however, obtained at the price of a reduced average user throughput. Copyright © 2010 John Wiley & Sons, Ltd.\",\"PeriodicalId\":50473,\"journal\":{\"name\":\"European Transactions on Telecommunications\",\"volume\":\"106 1\",\"pages\":\"694-703\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Transactions on Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/ett.1456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Transactions on Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ett.1456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

由于对更高数据速率应用的需求不断增加,以及频谱拥挤的实际情况,动态频谱接入(Dynamic spectrum Access, DSA)成为一个活跃的研究课题。在本文中,我们分析了在无线接入网(ran)之间共享协调接入频带(CAB)的蜂窝网络环境下的DSA。我们提出了一种半马尔可夫决策过程(SMDP)方法,从操作员奖励的角度推导出最优的DSA策略。为了克服最优策略实现所带来的限制,我们还提出了两种简单但次优的DSA算法:基于Q-learning (QL)的算法和启发式算法。使用后者获得的奖励显示非常接近最优情况,因此大大超过使用固定频谱接入(FSA)获得的奖励。结果表明,使用基于sql的算法获得的奖励超过使用FSA获得的奖励。然而,使用DSA最优和启发式方法获得更高的回报和更好的频谱利用率是以降低平均用户吞吐量为代价的。版权所有©2010 John Wiley & Sons, Ltd
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal, heuristic and Q-learning based DSA policies for cellular networks with coordinated access band
Due to the increasing demands for higher data rate applications, also due to the actual spectrum crowd situation, Dynamic Spectrum Access (DSA) turned into an active research topic. In this paper, we analyse DSA in cellular networks context, where a Coordinated Access Band (CAB) is shared between Radio Access Networks (RANs). We propose a Semi-Markov Decision Process (SMDP) approach to derive the optimal DSA policies in terms of operator reward. In order to overcome the limitations induced by optimal policy implementation, we also propose two simple, though sub-optimal, DSA algorithms: a Q-learning (QL) based algorithm and a heuristic algorithm. The achieved reward using the latter is shown to be very close to the optimal case and thus to significantly exceed the reward obtained with Fixed Spectrum Access (FSA). The rewards achieved by using the QL-based algorithm are shown to exceed those obtained by using FSA. Higher rewards and better spectrum utilisation with DSA optimal and heuristic methods are, however, obtained at the price of a reduced average user throughput. Copyright © 2010 John Wiley & Sons, Ltd.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
9 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信