{"title":"Mac lane-vaquiÉ链和超值扩展","authors":"Sneha Mavi, Anuj Bishnoi","doi":"10.1216/jca.2023.15.249","DOIUrl":null,"url":null,"abstract":"In this paper, for a valued field $(K, v)$ of arbitrary rank and an extension $w$ of $v$ to $K(X),$ we give a connection between complete sets of ABKPs for $w$ and MacLane-Vaqui\\'e chains of $w.$","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"MAC LANE–VAQUIÉ CHAINS AND VALUATION-TRANSCENDENTAL EXTENSIONS\",\"authors\":\"Sneha Mavi, Anuj Bishnoi\",\"doi\":\"10.1216/jca.2023.15.249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, for a valued field $(K, v)$ of arbitrary rank and an extension $w$ of $v$ to $K(X),$ we give a connection between complete sets of ABKPs for $w$ and MacLane-Vaqui\\\\'e chains of $w.$\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1216/jca.2023.15.249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2023.15.249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MAC LANE–VAQUIÉ CHAINS AND VALUATION-TRANSCENDENTAL EXTENSIONS
In this paper, for a valued field $(K, v)$ of arbitrary rank and an extension $w$ of $v$ to $K(X),$ we give a connection between complete sets of ABKPs for $w$ and MacLane-Vaqui\'e chains of $w.$