一类四阶双曲型模型方程的Riquet问题

IF 0.1
I. M. Aleksandrovych, S. Lyashko, V. Lyashko, N. I. Lyashko, M. Sidorov
{"title":"一类四阶双曲型模型方程的Riquet问题","authors":"I. M. Aleksandrovych, S. Lyashko, V. Lyashko, N. I. Lyashko, M. Sidorov","doi":"10.17721/2706-9699.2022.2.01","DOIUrl":null,"url":null,"abstract":"Integral operators that transform arbitrary functions into regular solutions of hyperbolic equations of the second and higher orders are applied to solving boundary value problems. In particular, the Riquet problem for the Euler–Poisson–Darboux equation of the 4th order is posed and solved.","PeriodicalId":40347,"journal":{"name":"Journal of Numerical and Applied Mathematics","volume":"32 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RIQUET PROBLEM FOR ONE MODEL EQUATION OF THE 4TH ORDER HYPERBOLIC TYPE\",\"authors\":\"I. M. Aleksandrovych, S. Lyashko, V. Lyashko, N. I. Lyashko, M. Sidorov\",\"doi\":\"10.17721/2706-9699.2022.2.01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integral operators that transform arbitrary functions into regular solutions of hyperbolic equations of the second and higher orders are applied to solving boundary value problems. In particular, the Riquet problem for the Euler–Poisson–Darboux equation of the 4th order is posed and solved.\",\"PeriodicalId\":40347,\"journal\":{\"name\":\"Journal of Numerical and Applied Mathematics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Numerical and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17721/2706-9699.2022.2.01\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/2706-9699.2022.2.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将任意函数转化为二阶或高阶双曲方程的正则解的积分算子应用于求解边值问题。特别地,提出并求解了四阶Euler-Poisson-Darboux方程的Riquet问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RIQUET PROBLEM FOR ONE MODEL EQUATION OF THE 4TH ORDER HYPERBOLIC TYPE
Integral operators that transform arbitrary functions into regular solutions of hyperbolic equations of the second and higher orders are applied to solving boundary value problems. In particular, the Riquet problem for the Euler–Poisson–Darboux equation of the 4th order is posed and solved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信