一种新的结构-运动歧义

J. Oliensis
{"title":"一种新的结构-运动歧义","authors":"J. Oliensis","doi":"10.1109/CVPR.1999.786937","DOIUrl":null,"url":null,"abstract":"This paper demonstrates the existence of a generic approximate ambiguity in Euclidean structure from motion (SFM) which applies to scenes with large depth variation. In projective SFM the ambiguity is absent, but the maximum-likelihood reconstruction is more likely to have occasional very large errors. The analysis gives a semi-quantitative characterization of the least-squares error surface over a domain complementary to that analyzed by Jepson/Heeger/Maybank.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"79 4 1","pages":"185-191 Vol. 1"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":"{\"title\":\"A new structure-from-motion ambiguity\",\"authors\":\"J. Oliensis\",\"doi\":\"10.1109/CVPR.1999.786937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper demonstrates the existence of a generic approximate ambiguity in Euclidean structure from motion (SFM) which applies to scenes with large depth variation. In projective SFM the ambiguity is absent, but the maximum-likelihood reconstruction is more likely to have occasional very large errors. The analysis gives a semi-quantitative characterization of the least-squares error surface over a domain complementary to that analyzed by Jepson/Heeger/Maybank.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":\"79 4 1\",\"pages\":\"185-191 Vol. 1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"43\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.786937\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.786937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

摘要

本文论证了欧几里得运动结构(SFM)中存在一种通用的近似模糊性,该模糊性适用于深度变化较大的场景。在投影SFM中不存在歧义,但最大似然重建更有可能偶尔出现非常大的误差。该分析给出了与Jepson/Heeger/Maybank分析的互补域上的最小二乘误差曲面的半定量表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new structure-from-motion ambiguity
This paper demonstrates the existence of a generic approximate ambiguity in Euclidean structure from motion (SFM) which applies to scenes with large depth variation. In projective SFM the ambiguity is absent, but the maximum-likelihood reconstruction is more likely to have occasional very large errors. The analysis gives a semi-quantitative characterization of the least-squares error surface over a domain complementary to that analyzed by Jepson/Heeger/Maybank.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信