第一类复量子陈-西蒙斯理论

IF 0.6 3区 数学 Q3 MATHEMATICS
J. Andersen, A. Malusà, Gabriele Rembado
{"title":"第一类复量子陈-西蒙斯理论","authors":"J. Andersen, A. Malusà, Gabriele Rembado","doi":"10.4310/JSG.2022.v20.n6.a1","DOIUrl":null,"url":null,"abstract":"We consider the geometric quantisation of Chern--Simons theory for closed genus-one surfaces and semisimple complex groups. First we introduce the natural complexified analogue of the Hitchin connection in K\\\"{a}hler quantisation, with polarisations coming from the nonabelian Hodge hyper-K\\\"{a}hler geometry of the moduli spaces of flat connections, thereby complementing the real-polarised approach of Witten. Then we consider the connection of Witten, and we identify it with the complexified Hitchin connection using a version of the Bargmann transform on polarised sections over the moduli spaces.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"6 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Genus-one complex quantum Chern–Simons theory\",\"authors\":\"J. Andersen, A. Malusà, Gabriele Rembado\",\"doi\":\"10.4310/JSG.2022.v20.n6.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the geometric quantisation of Chern--Simons theory for closed genus-one surfaces and semisimple complex groups. First we introduce the natural complexified analogue of the Hitchin connection in K\\\\\\\"{a}hler quantisation, with polarisations coming from the nonabelian Hodge hyper-K\\\\\\\"{a}hler geometry of the moduli spaces of flat connections, thereby complementing the real-polarised approach of Witten. Then we consider the connection of Witten, and we identify it with the complexified Hitchin connection using a version of the Bargmann transform on polarised sections over the moduli spaces.\",\"PeriodicalId\":50029,\"journal\":{\"name\":\"Journal of Symplectic Geometry\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symplectic Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/JSG.2022.v20.n6.a1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2022.v20.n6.a1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

研究了闭属1曲面和半单复群的Chern—Simons理论的几何量子化问题。首先,我们引入了K\ {a}hler量化中Hitchin连接的自然复化模拟,其极化来自平坦连接的模空间的非阿贝尔Hodge超K\ {a}hler几何,从而补充了Witten的实极化方法。然后考虑Witten连接,并利用模空间上极化截面上的Bargmann变换的一个版本,将其与复化的Hitchin连接进行了标识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genus-one complex quantum Chern–Simons theory
We consider the geometric quantisation of Chern--Simons theory for closed genus-one surfaces and semisimple complex groups. First we introduce the natural complexified analogue of the Hitchin connection in K\"{a}hler quantisation, with polarisations coming from the nonabelian Hodge hyper-K\"{a}hler geometry of the moduli spaces of flat connections, thereby complementing the real-polarised approach of Witten. Then we consider the connection of Witten, and we identify it with the complexified Hitchin connection using a version of the Bargmann transform on polarised sections over the moduli spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信