{"title":"第一类复量子陈-西蒙斯理论","authors":"J. Andersen, A. Malusà, Gabriele Rembado","doi":"10.4310/JSG.2022.v20.n6.a1","DOIUrl":null,"url":null,"abstract":"We consider the geometric quantisation of Chern--Simons theory for closed genus-one surfaces and semisimple complex groups. First we introduce the natural complexified analogue of the Hitchin connection in K\\\"{a}hler quantisation, with polarisations coming from the nonabelian Hodge hyper-K\\\"{a}hler geometry of the moduli spaces of flat connections, thereby complementing the real-polarised approach of Witten. Then we consider the connection of Witten, and we identify it with the complexified Hitchin connection using a version of the Bargmann transform on polarised sections over the moduli spaces.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Genus-one complex quantum Chern–Simons theory\",\"authors\":\"J. Andersen, A. Malusà, Gabriele Rembado\",\"doi\":\"10.4310/JSG.2022.v20.n6.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the geometric quantisation of Chern--Simons theory for closed genus-one surfaces and semisimple complex groups. First we introduce the natural complexified analogue of the Hitchin connection in K\\\\\\\"{a}hler quantisation, with polarisations coming from the nonabelian Hodge hyper-K\\\\\\\"{a}hler geometry of the moduli spaces of flat connections, thereby complementing the real-polarised approach of Witten. Then we consider the connection of Witten, and we identify it with the complexified Hitchin connection using a version of the Bargmann transform on polarised sections over the moduli spaces.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/JSG.2022.v20.n6.a1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2022.v20.n6.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider the geometric quantisation of Chern--Simons theory for closed genus-one surfaces and semisimple complex groups. First we introduce the natural complexified analogue of the Hitchin connection in K\"{a}hler quantisation, with polarisations coming from the nonabelian Hodge hyper-K\"{a}hler geometry of the moduli spaces of flat connections, thereby complementing the real-polarised approach of Witten. Then we consider the connection of Witten, and we identify it with the complexified Hitchin connection using a version of the Bargmann transform on polarised sections over the moduli spaces.