二自由度控制器的坐标设计,实现快速、精确的定位

Takanori Kato, Y. Maeda, M. Iwasaki, H. Hirai
{"title":"二自由度控制器的坐标设计,实现快速、精确的定位","authors":"Takanori Kato, Y. Maeda, M. Iwasaki, H. Hirai","doi":"10.1109/AMC.2012.6197048","DOIUrl":null,"url":null,"abstract":"This paper presents a novel robust 2-degrees-of-freedom (2-DOF) positioning controller design methodology against frequency perturbations in mechanical vibration modes. The authors have already proposed an LMI (linear matrix inequality)-based feedforward (FF) compensator design to provide robust properties in positioning against the perturbations, where a feedback (FB) controller has been independently designed to ensure the robust stability on the basis of the 2-DOF controller design framework. A problem, however, still remains that the undesired response in the FB system due to the perturbations deteriorates the ideal response by the FF compensation. The proposed controller design, therefore, considers the FB system in the FF compensator design to solve the problem. In addition, the FB controller is redesigned to improve the positioning performance as a coordinate design between the FB and the FF controllers. The effectiveness of the proposed approach has been verified by numerical simulations and experiments using a prototype of galvano scanners.","PeriodicalId":6439,"journal":{"name":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","volume":"158 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A coordinate design of two-degrees-of-freedom controller for fast and precise positioning\",\"authors\":\"Takanori Kato, Y. Maeda, M. Iwasaki, H. Hirai\",\"doi\":\"10.1109/AMC.2012.6197048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel robust 2-degrees-of-freedom (2-DOF) positioning controller design methodology against frequency perturbations in mechanical vibration modes. The authors have already proposed an LMI (linear matrix inequality)-based feedforward (FF) compensator design to provide robust properties in positioning against the perturbations, where a feedback (FB) controller has been independently designed to ensure the robust stability on the basis of the 2-DOF controller design framework. A problem, however, still remains that the undesired response in the FB system due to the perturbations deteriorates the ideal response by the FF compensation. The proposed controller design, therefore, considers the FB system in the FF compensator design to solve the problem. In addition, the FB controller is redesigned to improve the positioning performance as a coordinate design between the FB and the FF controllers. The effectiveness of the proposed approach has been verified by numerical simulations and experiments using a prototype of galvano scanners.\",\"PeriodicalId\":6439,\"journal\":{\"name\":\"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)\",\"volume\":\"158 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMC.2012.6197048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th IEEE International Workshop on Advanced Motion Control (AMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMC.2012.6197048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种新的抗频率扰动的鲁棒2自由度定位控制器设计方法。作者已经提出了一种基于LMI(线性矩阵不等式)的前馈(FF)补偿器设计,以提供针对摄动定位的鲁棒特性,其中一个反馈(FB)控制器已经独立设计,以确保在2自由度控制器设计框架的基础上的鲁棒稳定性。然而,一个问题仍然存在,即由于扰动在FB系统中引起的非期望响应恶化了FF补偿的理想响应。因此,所提出的控制器设计,在FF补偿器设计中考虑了FB系统来解决这个问题。此外,作为FB控制器和FF控制器之间的坐标设计,对FB控制器进行了重新设计,以提高定位性能。数值模拟和实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A coordinate design of two-degrees-of-freedom controller for fast and precise positioning
This paper presents a novel robust 2-degrees-of-freedom (2-DOF) positioning controller design methodology against frequency perturbations in mechanical vibration modes. The authors have already proposed an LMI (linear matrix inequality)-based feedforward (FF) compensator design to provide robust properties in positioning against the perturbations, where a feedback (FB) controller has been independently designed to ensure the robust stability on the basis of the 2-DOF controller design framework. A problem, however, still remains that the undesired response in the FB system due to the perturbations deteriorates the ideal response by the FF compensation. The proposed controller design, therefore, considers the FB system in the FF compensator design to solve the problem. In addition, the FB controller is redesigned to improve the positioning performance as a coordinate design between the FB and the FF controllers. The effectiveness of the proposed approach has been verified by numerical simulations and experiments using a prototype of galvano scanners.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信