Madison Cooley, C. Greene, Davis Issac, M. Pividori, Blair D. Sullivan
{"title":"基于加权团块分解的参数化基因共表达模块识别算法","authors":"Madison Cooley, C. Greene, Davis Issac, M. Pividori, Blair D. Sullivan","doi":"10.1137/1.9781611976830.11","DOIUrl":null,"url":null,"abstract":"We present a new combinatorial model for identifying regulatory modules in gene co-expression data using a decomposition into weighted cliques. To capture complex interaction effects, we generalize the previously-studied weighted edge clique partition problem. As a first step, we restrict ourselves to the noise-free setting, and show that the problem is fixed parameter tractable when parameterized by the number of modules (cliques). We present two new algorithms for finding these decompositions, using linear programming and integer partitioning to determine the clique weights. Further, we implement these algorithms in Python and test them on a biologically-inspired synthetic corpus generated using real-world data from transcription factors and a latent variable analysis of co-expression in varying cell types.","PeriodicalId":93610,"journal":{"name":"Proceedings of the 2021 SIAM Conference on Applied and Computational Discrete Algorithms. SIAM Conference on Applied and Computational Discrete Algorithms (2021 : Online)","volume":"34 1","pages":"111-122"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Parameterized algorithms for identifying gene co-expression modules via weighted clique decomposition\",\"authors\":\"Madison Cooley, C. Greene, Davis Issac, M. Pividori, Blair D. Sullivan\",\"doi\":\"10.1137/1.9781611976830.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new combinatorial model for identifying regulatory modules in gene co-expression data using a decomposition into weighted cliques. To capture complex interaction effects, we generalize the previously-studied weighted edge clique partition problem. As a first step, we restrict ourselves to the noise-free setting, and show that the problem is fixed parameter tractable when parameterized by the number of modules (cliques). We present two new algorithms for finding these decompositions, using linear programming and integer partitioning to determine the clique weights. Further, we implement these algorithms in Python and test them on a biologically-inspired synthetic corpus generated using real-world data from transcription factors and a latent variable analysis of co-expression in varying cell types.\",\"PeriodicalId\":93610,\"journal\":{\"name\":\"Proceedings of the 2021 SIAM Conference on Applied and Computational Discrete Algorithms. SIAM Conference on Applied and Computational Discrete Algorithms (2021 : Online)\",\"volume\":\"34 1\",\"pages\":\"111-122\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 SIAM Conference on Applied and Computational Discrete Algorithms. SIAM Conference on Applied and Computational Discrete Algorithms (2021 : Online)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/1.9781611976830.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 SIAM Conference on Applied and Computational Discrete Algorithms. SIAM Conference on Applied and Computational Discrete Algorithms (2021 : Online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611976830.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parameterized algorithms for identifying gene co-expression modules via weighted clique decomposition
We present a new combinatorial model for identifying regulatory modules in gene co-expression data using a decomposition into weighted cliques. To capture complex interaction effects, we generalize the previously-studied weighted edge clique partition problem. As a first step, we restrict ourselves to the noise-free setting, and show that the problem is fixed parameter tractable when parameterized by the number of modules (cliques). We present two new algorithms for finding these decompositions, using linear programming and integer partitioning to determine the clique weights. Further, we implement these algorithms in Python and test them on a biologically-inspired synthetic corpus generated using real-world data from transcription factors and a latent variable analysis of co-expression in varying cell types.