基于机器学习的僵尸网络检测综合方法

Q4 Computer Science
Kapil Kumar
{"title":"基于机器学习的僵尸网络检测综合方法","authors":"Kapil Kumar","doi":"10.4018/ijossp.287613","DOIUrl":null,"url":null,"abstract":"The botnet interrupts network devices and keeps control of the connections with the command, which controls the programmer, and the programmer controls the malicious code injected in the machine for obtaining information about the machines. The attacker uses a botnet to commence dangerous attacks as DDoS, phishing, despoil of information, and spamming. The botnet establishes with a large network and several hosts belong to it. In the paper, the authors proposed the framework of botnet detection by using an Artificial Neural Network. The author research upgrading the extant system by comprising of cache memory to fast the process. Finally, for detection, the author used an analytical approach, which is known as an artificial neural network that contains three layers: the input layer, hidden layer, output layer, and all layers are connected to correlate and approximate the results. The experiment result determines that the classifier with 25 epochs gives optimal accuracy is 99.78 percent and shows the detection rate is 99.7 percent.","PeriodicalId":53605,"journal":{"name":"International Journal of Open Source Software and Processes","volume":"106 1","pages":"1-25"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Comprehensive Method of Botnet Detection Using Machine Learning\",\"authors\":\"Kapil Kumar\",\"doi\":\"10.4018/ijossp.287613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The botnet interrupts network devices and keeps control of the connections with the command, which controls the programmer, and the programmer controls the malicious code injected in the machine for obtaining information about the machines. The attacker uses a botnet to commence dangerous attacks as DDoS, phishing, despoil of information, and spamming. The botnet establishes with a large network and several hosts belong to it. In the paper, the authors proposed the framework of botnet detection by using an Artificial Neural Network. The author research upgrading the extant system by comprising of cache memory to fast the process. Finally, for detection, the author used an analytical approach, which is known as an artificial neural network that contains three layers: the input layer, hidden layer, output layer, and all layers are connected to correlate and approximate the results. The experiment result determines that the classifier with 25 epochs gives optimal accuracy is 99.78 percent and shows the detection rate is 99.7 percent.\",\"PeriodicalId\":53605,\"journal\":{\"name\":\"International Journal of Open Source Software and Processes\",\"volume\":\"106 1\",\"pages\":\"1-25\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Open Source Software and Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijossp.287613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Open Source Software and Processes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijossp.287613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 1

摘要

僵尸网络通过命令中断网络设备并保持对连接的控制,命令控制程序员,程序员控制注入到机器中的恶意代码以获取机器的信息。攻击者使用僵尸网络开始危险的攻击,如DDoS、网络钓鱼、窃取信息和发送垃圾邮件。僵尸网络建立在一个庞大的网络中,其中包含多台主机。本文提出了一种基于人工神经网络的僵尸网络检测框架。作者研究了在现有系统中加入高速缓存来加快系统升级速度的方法。最后,对于检测,作者使用了一种分析的方法,这种方法被称为人工神经网络,它包含三层:输入层,隐藏层,输出层,所有层都连接起来,以关联和近似结果。实验结果表明,25个epoch的分类器的最优准确率为99.78%,检测率为99.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comprehensive Method of Botnet Detection Using Machine Learning
The botnet interrupts network devices and keeps control of the connections with the command, which controls the programmer, and the programmer controls the malicious code injected in the machine for obtaining information about the machines. The attacker uses a botnet to commence dangerous attacks as DDoS, phishing, despoil of information, and spamming. The botnet establishes with a large network and several hosts belong to it. In the paper, the authors proposed the framework of botnet detection by using an Artificial Neural Network. The author research upgrading the extant system by comprising of cache memory to fast the process. Finally, for detection, the author used an analytical approach, which is known as an artificial neural network that contains three layers: the input layer, hidden layer, output layer, and all layers are connected to correlate and approximate the results. The experiment result determines that the classifier with 25 epochs gives optimal accuracy is 99.78 percent and shows the detection rate is 99.7 percent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
16
期刊介绍: The International Journal of Open Source Software and Processes (IJOSSP) publishes high-quality peer-reviewed and original research articles on the large field of open source software and processes. This wide area entails many intriguing question and facets, including the special development process performed by a large number of geographically dispersed programmers, community issues like coordination and communication, motivations of the participants, and also economic and legal issues. Beyond this topic, open source software is an example of a highly distributed innovation process led by the users. Therefore, many aspects have relevance beyond the realm of software and its development. In this tradition, IJOSSP also publishes papers on these topics. IJOSSP is a multi-disciplinary outlet, and welcomes submissions from all relevant fields of research and applying a multitude of research approaches.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信