基于正交投影的阵列信号子空间估计算法

Lijie Zhang, Jianguo Huang, Yunshan Hou, Qunfei Zhang
{"title":"基于正交投影的阵列信号子空间估计算法","authors":"Lijie Zhang, Jianguo Huang, Yunshan Hou, Qunfei Zhang","doi":"10.1109/RWS.2008.4463636","DOIUrl":null,"url":null,"abstract":"Subspace-based methods rely on eigenvalue decomposition (EVD) or singular value decomposition (SVD) of a data matrix to compute the array signal or noise subspace, and thus inevitably lead to intensive computational complexity besides a large algorithmic delay. In this paper, an orthogonal projections based algorithm for array signal subspace estimation (OP) is proposed, where by exploiting a reference signal with known waveform the orthogonal projections of array data are calculated step by step to form a set of basis vectors for the signal and/or noise subspace without eigendecomposition. The subspace formed by the OP algorithm is proved mathematically to be equivalent to the real signal subspace. Signal subspace estimation error function and noise subspace estimation error function are defined to evaluate subspace estimation precision. Statistical analysis and simulation results show that the OP algorithm is computationally simple and the subspace estimation precision is roughly equivalent to that of EVD. At the end of the paper, an application to direction-of-arrival (DOA) estimation verifies the good performance of the OP algorithm.","PeriodicalId":90697,"journal":{"name":"Proceedings. IEEE Radio and Wireless Symposium","volume":"34 1","pages":"891-894"},"PeriodicalIF":0.0000,"publicationDate":"2008-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orthogonal projections based algorithm for array signal subspace estimation\",\"authors\":\"Lijie Zhang, Jianguo Huang, Yunshan Hou, Qunfei Zhang\",\"doi\":\"10.1109/RWS.2008.4463636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subspace-based methods rely on eigenvalue decomposition (EVD) or singular value decomposition (SVD) of a data matrix to compute the array signal or noise subspace, and thus inevitably lead to intensive computational complexity besides a large algorithmic delay. In this paper, an orthogonal projections based algorithm for array signal subspace estimation (OP) is proposed, where by exploiting a reference signal with known waveform the orthogonal projections of array data are calculated step by step to form a set of basis vectors for the signal and/or noise subspace without eigendecomposition. The subspace formed by the OP algorithm is proved mathematically to be equivalent to the real signal subspace. Signal subspace estimation error function and noise subspace estimation error function are defined to evaluate subspace estimation precision. Statistical analysis and simulation results show that the OP algorithm is computationally simple and the subspace estimation precision is roughly equivalent to that of EVD. At the end of the paper, an application to direction-of-arrival (DOA) estimation verifies the good performance of the OP algorithm.\",\"PeriodicalId\":90697,\"journal\":{\"name\":\"Proceedings. IEEE Radio and Wireless Symposium\",\"volume\":\"34 1\",\"pages\":\"891-894\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE Radio and Wireless Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RWS.2008.4463636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Radio and Wireless Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS.2008.4463636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于子空间的方法依赖于数据矩阵的特征值分解(EVD)或奇异值分解(SVD)来计算阵列信号或噪声子空间,因此除了算法延迟大之外,不可避免地导致了大量的计算复杂度。本文提出了一种基于正交投影的阵列信号子空间估计算法,该算法利用已知波形的参考信号,逐级计算阵列数据的正交投影,形成一组不需要特征分解的信号或噪声子空间的基向量。从数学上证明了OP算法所形成的子空间与实信号子空间是等价的。定义了信号子空间估计误差函数和噪声子空间估计误差函数来评估子空间估计精度。统计分析和仿真结果表明,OP算法计算简单,子空间估计精度与EVD算法大致相当。最后,通过对到达方向(DOA)估计的应用验证了该算法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Orthogonal projections based algorithm for array signal subspace estimation
Subspace-based methods rely on eigenvalue decomposition (EVD) or singular value decomposition (SVD) of a data matrix to compute the array signal or noise subspace, and thus inevitably lead to intensive computational complexity besides a large algorithmic delay. In this paper, an orthogonal projections based algorithm for array signal subspace estimation (OP) is proposed, where by exploiting a reference signal with known waveform the orthogonal projections of array data are calculated step by step to form a set of basis vectors for the signal and/or noise subspace without eigendecomposition. The subspace formed by the OP algorithm is proved mathematically to be equivalent to the real signal subspace. Signal subspace estimation error function and noise subspace estimation error function are defined to evaluate subspace estimation precision. Statistical analysis and simulation results show that the OP algorithm is computationally simple and the subspace estimation precision is roughly equivalent to that of EVD. At the end of the paper, an application to direction-of-arrival (DOA) estimation verifies the good performance of the OP algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信