时间尺度上的量子脉冲动力学方程

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Latifat Adebisi Abimbola, Afolabi O Adedamola
{"title":"时间尺度上的量子脉冲动力学方程","authors":"Latifat Adebisi Abimbola, Afolabi O Adedamola","doi":"10.12988/ams.2023.917476","DOIUrl":null,"url":null,"abstract":"We generalize First order Impulsive Dynamic equation on time scale to quantum stochastic calculus of Hudson and Parthasathy formulation of quantum stochastic calculus on a certain locally convex space. We establish existence result for the quantum impulsive dynamic equation on time scale considering impulse at fixed moment, we apply the non-commutative analogue of Leray-Schauder and Arzela Ascoli fixed point theorems in establishing the existence of solution.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum impulsive dynamic equations on time scales\",\"authors\":\"Latifat Adebisi Abimbola, Afolabi O Adedamola\",\"doi\":\"10.12988/ams.2023.917476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize First order Impulsive Dynamic equation on time scale to quantum stochastic calculus of Hudson and Parthasathy formulation of quantum stochastic calculus on a certain locally convex space. We establish existence result for the quantum impulsive dynamic equation on time scale considering impulse at fixed moment, we apply the non-commutative analogue of Leray-Schauder and Arzela Ascoli fixed point theorems in establishing the existence of solution.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12988/ams.2023.917476\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12988/ams.2023.917476","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

将时间尺度上的一阶脉冲动力方程推广到Hudson的量子随机微积分和局部凸空间上量子随机微积分的Parthasathy公式。建立了考虑固定时刻脉冲的时间尺度量子脉冲动力学方程的存在性结果,应用了Leray-Schauder不动点定理和Arzela Ascoli不动点定理的非交换类比来建立解的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum impulsive dynamic equations on time scales
We generalize First order Impulsive Dynamic equation on time scale to quantum stochastic calculus of Hudson and Parthasathy formulation of quantum stochastic calculus on a certain locally convex space. We establish existence result for the quantum impulsive dynamic equation on time scale considering impulse at fixed moment, we apply the non-commutative analogue of Leray-Schauder and Arzela Ascoli fixed point theorems in establishing the existence of solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信