{"title":"时间尺度上的量子脉冲动力学方程","authors":"Latifat Adebisi Abimbola, Afolabi O Adedamola","doi":"10.12988/ams.2023.917476","DOIUrl":null,"url":null,"abstract":"We generalize First order Impulsive Dynamic equation on time scale to quantum stochastic calculus of Hudson and Parthasathy formulation of quantum stochastic calculus on a certain locally convex space. We establish existence result for the quantum impulsive dynamic equation on time scale considering impulse at fixed moment, we apply the non-commutative analogue of Leray-Schauder and Arzela Ascoli fixed point theorems in establishing the existence of solution.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum impulsive dynamic equations on time scales\",\"authors\":\"Latifat Adebisi Abimbola, Afolabi O Adedamola\",\"doi\":\"10.12988/ams.2023.917476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We generalize First order Impulsive Dynamic equation on time scale to quantum stochastic calculus of Hudson and Parthasathy formulation of quantum stochastic calculus on a certain locally convex space. We establish existence result for the quantum impulsive dynamic equation on time scale considering impulse at fixed moment, we apply the non-commutative analogue of Leray-Schauder and Arzela Ascoli fixed point theorems in establishing the existence of solution.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12988/ams.2023.917476\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12988/ams.2023.917476","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Quantum impulsive dynamic equations on time scales
We generalize First order Impulsive Dynamic equation on time scale to quantum stochastic calculus of Hudson and Parthasathy formulation of quantum stochastic calculus on a certain locally convex space. We establish existence result for the quantum impulsive dynamic equation on time scale considering impulse at fixed moment, we apply the non-commutative analogue of Leray-Schauder and Arzela Ascoli fixed point theorems in establishing the existence of solution.