关于Freiman的3k−4定理

M. Huicochea
{"title":"关于Freiman的3k−4定理","authors":"M. Huicochea","doi":"10.2478/udt-2019-0013","DOIUrl":null,"url":null,"abstract":"Abstract Let X and Y be nonempty finite subsets of 𝕑 and X +Y its sumset. The structures of X and Y when r(X, Y ):= |X +Y |−|X|−|Y | is small have been widely studied; in particular the Generalized Freiman’s 3k − 4 Theorem describes X and Y when r(X, Y ) ≤ min{|X|, |Y |} − 4. However, not too much is known about X and Y when r(X, Y ) > min{|X|, |Y |} − 4. In this paper we study the structure of X and Y for arbitrary r(X, Y ).","PeriodicalId":23390,"journal":{"name":"Uniform distribution theory","volume":"63 1","pages":"43 - 68"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Freiman’s 3k − 4 Theorem\",\"authors\":\"M. Huicochea\",\"doi\":\"10.2478/udt-2019-0013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let X and Y be nonempty finite subsets of 𝕑 and X +Y its sumset. The structures of X and Y when r(X, Y ):= |X +Y |−|X|−|Y | is small have been widely studied; in particular the Generalized Freiman’s 3k − 4 Theorem describes X and Y when r(X, Y ) ≤ min{|X|, |Y |} − 4. However, not too much is known about X and Y when r(X, Y ) > min{|X|, |Y |} − 4. In this paper we study the structure of X and Y for arbitrary r(X, Y ).\",\"PeriodicalId\":23390,\"journal\":{\"name\":\"Uniform distribution theory\",\"volume\":\"63 1\",\"pages\":\"43 - 68\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uniform distribution theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/udt-2019-0013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uniform distribution theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/udt-2019-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设X和Y为𝕑的非空有限子集,X +Y为其集合。当r(X, Y):= |X +Y |−|X|−|Y |较小时,X和Y的结构已被广泛研究;特别地,广义Freiman的3k−4定理描述了当r(X, Y)≤min{|X|, |Y |}−4时的X和Y。然而,当r(X, Y) > min{|X|, |Y |}−4时,对X和Y的了解并不多。本文研究了任意r(X, Y)的X和Y的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Freiman’s 3k − 4 Theorem
Abstract Let X and Y be nonempty finite subsets of 𝕑 and X +Y its sumset. The structures of X and Y when r(X, Y ):= |X +Y |−|X|−|Y | is small have been widely studied; in particular the Generalized Freiman’s 3k − 4 Theorem describes X and Y when r(X, Y ) ≤ min{|X|, |Y |} − 4. However, not too much is known about X and Y when r(X, Y ) > min{|X|, |Y |} − 4. In this paper we study the structure of X and Y for arbitrary r(X, Y ).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信