线性拟双曲型积分-微分方程有限元法的超收敛性

W. Shen
{"title":"线性拟双曲型积分-微分方程有限元法的超收敛性","authors":"W. Shen","doi":"10.1109/ICIC.2011.120","DOIUrl":null,"url":null,"abstract":"We consider finite element methods applied to a class of quasi-hyperbolic integro-differential equations. Global strong super convergence, which only requires that partitions are quasi-uniform, is investigated for the error between the approximate solution and the Sobolev-Volterra projection of the exact solution. We employ a special method for initial value selection to study super convergence of the error. Two order super convergence results are demonstrated.","PeriodicalId":6397,"journal":{"name":"2011 Fourth International Conference on Information and Computing","volume":"17 1","pages":"212-215"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Superconvergence of Finite Element Methods for Linear Quasi-hyperbolic Integro-differential Equations\",\"authors\":\"W. Shen\",\"doi\":\"10.1109/ICIC.2011.120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider finite element methods applied to a class of quasi-hyperbolic integro-differential equations. Global strong super convergence, which only requires that partitions are quasi-uniform, is investigated for the error between the approximate solution and the Sobolev-Volterra projection of the exact solution. We employ a special method for initial value selection to study super convergence of the error. Two order super convergence results are demonstrated.\",\"PeriodicalId\":6397,\"journal\":{\"name\":\"2011 Fourth International Conference on Information and Computing\",\"volume\":\"17 1\",\"pages\":\"212-215\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Conference on Information and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIC.2011.120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Information and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIC.2011.120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑一类拟双曲型积分微分方程的有限元方法。研究了近似解与精确解的Sobolev-Volterra投影之间的误差,其全局强超收敛性只要求分区是拟一致的。我们采用一种特殊的初始值选择方法来研究误差的超收敛性。给出了二阶超收敛的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Superconvergence of Finite Element Methods for Linear Quasi-hyperbolic Integro-differential Equations
We consider finite element methods applied to a class of quasi-hyperbolic integro-differential equations. Global strong super convergence, which only requires that partitions are quasi-uniform, is investigated for the error between the approximate solution and the Sobolev-Volterra projection of the exact solution. We employ a special method for initial value selection to study super convergence of the error. Two order super convergence results are demonstrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信