benjamin - bona - mahoney - burgers方程的内部反馈控制

IF 0.3 Q4 MATHEMATICS, APPLIED
Guang-Ri Piao, Hyung-Chen Lee
{"title":"benjamin - bona - mahoney - burgers方程的内部反馈控制","authors":"Guang-Ri Piao, Hyung-Chen Lee","doi":"10.12941/JKSIAM.2014.18.269","DOIUrl":null,"url":null,"abstract":"A numerical scheme is proposed to control the BBMB (Benjamin-Bona-Mahony-Burgers) equation, and the scheme consists of three steps. Firstly, BBMB equation is converted to a finite set of nonlinear ordinary differential equations by the quadratic B-spline finite element method in spatial. Secondly, the controller is designed based on the linear quadratic regulator (LQR) theory; Finally, the system of the closed loop compensator obtained on the basis of the previous two steps is solved by the backward Euler method. The controlled numerical solutions are obtained for various values of parameters and different initial conditions. Numerical simulations show that the scheme is efficient and feasible.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"22 1","pages":"269-277"},"PeriodicalIF":0.3000,"publicationDate":"2014-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"INTERNAL FEEDBACK CONTROL OF THE BENJAMIN-BONA-MAHONY-BURGERS EQUATION\",\"authors\":\"Guang-Ri Piao, Hyung-Chen Lee\",\"doi\":\"10.12941/JKSIAM.2014.18.269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerical scheme is proposed to control the BBMB (Benjamin-Bona-Mahony-Burgers) equation, and the scheme consists of three steps. Firstly, BBMB equation is converted to a finite set of nonlinear ordinary differential equations by the quadratic B-spline finite element method in spatial. Secondly, the controller is designed based on the linear quadratic regulator (LQR) theory; Finally, the system of the closed loop compensator obtained on the basis of the previous two steps is solved by the backward Euler method. The controlled numerical solutions are obtained for various values of parameters and different initial conditions. Numerical simulations show that the scheme is efficient and feasible.\",\"PeriodicalId\":41717,\"journal\":{\"name\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"volume\":\"22 1\",\"pages\":\"269-277\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2014-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Korean Society for Industrial and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12941/JKSIAM.2014.18.269\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2014.18.269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 7

摘要

提出了一种控制BBMB (Benjamin-Bona-Mahony-Burgers)方程的数值方案,该方案包括三个步骤。首先,利用二次b样条有限元法在空间上将BBMB方程转化为有限的非线性常微分方程。其次,基于线性二次型调节器(LQR)理论设计了控制器;最后,利用后向欧拉法对前两步得到的闭环补偿器系统进行求解。得到了不同参数值和不同初始条件下的控制数值解。数值仿真结果表明,该方案是有效可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
INTERNAL FEEDBACK CONTROL OF THE BENJAMIN-BONA-MAHONY-BURGERS EQUATION
A numerical scheme is proposed to control the BBMB (Benjamin-Bona-Mahony-Burgers) equation, and the scheme consists of three steps. Firstly, BBMB equation is converted to a finite set of nonlinear ordinary differential equations by the quadratic B-spline finite element method in spatial. Secondly, the controller is designed based on the linear quadratic regulator (LQR) theory; Finally, the system of the closed loop compensator obtained on the basis of the previous two steps is solved by the backward Euler method. The controlled numerical solutions are obtained for various values of parameters and different initial conditions. Numerical simulations show that the scheme is efficient and feasible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信