{"title":"分数阶次扩散半线性偏微分方程最优控制的统一框架","authors":"Harbir Antil, C. Gal, M. Warma","doi":"10.3934/dcdss.2022012","DOIUrl":null,"url":null,"abstract":"<p style='text-indent:20px;'>We consider optimal control of fractional in time (subdiffusive, i.e., for <inline-formula><tex-math id=\"M1\">\\begin{document}$ 0<\\gamma <1 $\\end{document}</tex-math></inline-formula>) semilinear parabolic PDEs associated with various notions of diffusion operators in an unifying fashion. Under general assumptions on the nonlinearity we <inline-formula><tex-math id=\"M2\">\\begin{document}$\\mathsf{first\\;show}$\\end{document}</tex-math></inline-formula> the existence and regularity of solutions to the forward and the associated <inline-formula><tex-math id=\"M3\">\\begin{document}$\\mathsf{backward\\;(adjoint)}$\\end{document}</tex-math></inline-formula> problems. In the second part, we prove existence of optimal <inline-formula><tex-math id=\"M4\">\\begin{document}$\\mathsf{controls }$\\end{document}</tex-math></inline-formula> and characterize the associated <inline-formula><tex-math id=\"M5\">\\begin{document}$\\mathsf{first\\;order}$\\end{document}</tex-math></inline-formula> optimality conditions. Several examples involving fractional in time (and some fractional in space diffusion) equations are described in detail. The most challenging obstacle we overcome is the failure of the semigroup property for the semilinear problem in any scaling of (frequency-domain) Hilbert spaces.</p>","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A unified framework for optimal control of fractional in time subdiffusive semilinear PDEs\",\"authors\":\"Harbir Antil, C. Gal, M. Warma\",\"doi\":\"10.3934/dcdss.2022012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p style='text-indent:20px;'>We consider optimal control of fractional in time (subdiffusive, i.e., for <inline-formula><tex-math id=\\\"M1\\\">\\\\begin{document}$ 0<\\\\gamma <1 $\\\\end{document}</tex-math></inline-formula>) semilinear parabolic PDEs associated with various notions of diffusion operators in an unifying fashion. Under general assumptions on the nonlinearity we <inline-formula><tex-math id=\\\"M2\\\">\\\\begin{document}$\\\\mathsf{first\\\\;show}$\\\\end{document}</tex-math></inline-formula> the existence and regularity of solutions to the forward and the associated <inline-formula><tex-math id=\\\"M3\\\">\\\\begin{document}$\\\\mathsf{backward\\\\;(adjoint)}$\\\\end{document}</tex-math></inline-formula> problems. In the second part, we prove existence of optimal <inline-formula><tex-math id=\\\"M4\\\">\\\\begin{document}$\\\\mathsf{controls }$\\\\end{document}</tex-math></inline-formula> and characterize the associated <inline-formula><tex-math id=\\\"M5\\\">\\\\begin{document}$\\\\mathsf{first\\\\;order}$\\\\end{document}</tex-math></inline-formula> optimality conditions. Several examples involving fractional in time (and some fractional in space diffusion) equations are described in detail. The most challenging obstacle we overcome is the failure of the semigroup property for the semilinear problem in any scaling of (frequency-domain) Hilbert spaces.</p>\",\"PeriodicalId\":11254,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - S\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcdss.2022012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdss.2022012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A unified framework for optimal control of fractional in time subdiffusive semilinear PDEs
We consider optimal control of fractional in time (subdiffusive, i.e., for \begin{document}$ 0<\gamma <1 $\end{document}) semilinear parabolic PDEs associated with various notions of diffusion operators in an unifying fashion. Under general assumptions on the nonlinearity we \begin{document}$\mathsf{first\;show}$\end{document} the existence and regularity of solutions to the forward and the associated \begin{document}$\mathsf{backward\;(adjoint)}$\end{document} problems. In the second part, we prove existence of optimal \begin{document}$\mathsf{controls }$\end{document} and characterize the associated \begin{document}$\mathsf{first\;order}$\end{document} optimality conditions. Several examples involving fractional in time (and some fractional in space diffusion) equations are described in detail. The most challenging obstacle we overcome is the failure of the semigroup property for the semilinear problem in any scaling of (frequency-domain) Hilbert spaces.