{"title":"对称广义混合映射和平衡问题的弱收敛定理","authors":"Do Sang Kim, N. N. Hai, B. Dinh","doi":"10.3934/naco.2021051","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce three new iterative methods for finding a common point of the set of fixed points of a symmetric generalized hybrid mapping and the set of solutions of an equilibrium problem in a real Hilbert space. Each method can be considered as an combination of Ishikawa's process with the proximal point algorithm, the extragradient algorithm with or without linesearch. Under certain conditions on parameters, the iteration sequences generated by the proposed methods are proved to be weakly convergent to a solution of the problem. These results extend the previous results given in the literature. A numerical example is also provided to illustrate the proposed algorithms.","PeriodicalId":44957,"journal":{"name":"Numerical Algebra Control and Optimization","volume":"14 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Weak convergence theorems for symmetric generalized hybrid mappings and equilibrium problems\",\"authors\":\"Do Sang Kim, N. N. Hai, B. Dinh\",\"doi\":\"10.3934/naco.2021051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce three new iterative methods for finding a common point of the set of fixed points of a symmetric generalized hybrid mapping and the set of solutions of an equilibrium problem in a real Hilbert space. Each method can be considered as an combination of Ishikawa's process with the proximal point algorithm, the extragradient algorithm with or without linesearch. Under certain conditions on parameters, the iteration sequences generated by the proposed methods are proved to be weakly convergent to a solution of the problem. These results extend the previous results given in the literature. A numerical example is also provided to illustrate the proposed algorithms.\",\"PeriodicalId\":44957,\"journal\":{\"name\":\"Numerical Algebra Control and Optimization\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerical Algebra Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/naco.2021051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algebra Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/naco.2021051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Weak convergence theorems for symmetric generalized hybrid mappings and equilibrium problems
In this paper, we introduce three new iterative methods for finding a common point of the set of fixed points of a symmetric generalized hybrid mapping and the set of solutions of an equilibrium problem in a real Hilbert space. Each method can be considered as an combination of Ishikawa's process with the proximal point algorithm, the extragradient algorithm with or without linesearch. Under certain conditions on parameters, the iteration sequences generated by the proposed methods are proved to be weakly convergent to a solution of the problem. These results extend the previous results given in the literature. A numerical example is also provided to illustrate the proposed algorithms.
期刊介绍:
Numerical Algebra, Control and Optimization (NACO) aims at publishing original papers on any non-trivial interplay between control and optimization, and numerical techniques for their underlying linear and nonlinear algebraic systems. Topics of interest to NACO include the following: original research in theory, algorithms and applications of optimization; numerical methods for linear and nonlinear algebraic systems arising in modelling, control and optimisation; and original theoretical and applied research and development in the control of systems including all facets of control theory and its applications. In the application areas, special interests are on artificial intelligence and data sciences. The journal also welcomes expository submissions on subjects of current relevance to readers of the journal. The publication of papers in NACO is free of charge.