基于Gabidulin代码的部分单元存储器代码

A. Wachter-Zeh, V. Sidorenko, M. Bossert, V. Zyablov
{"title":"基于Gabidulin代码的部分单元存储器代码","authors":"A. Wachter-Zeh, V. Sidorenko, M. Bossert, V. Zyablov","doi":"10.1109/ISIT.2011.6034013","DOIUrl":null,"url":null,"abstract":"(Partial) Unit Memory ((P)UM) codes provide a powerful possibility to construct convolutional codes based on block codes in order to achieve a high decoding performance. In this contribution, a construction based on Gabidulin codes is considered. This construction requires a modified rank metric, the so-called sum rank metric. For the sum rank metric, the free rank distance, the extended row rank distance and its slope are defined. Upper bounds for the free rank distance and the slope of (P)UM codes in the sum rank metric are derived. The construction of PUM codes based on Gabidulin codes achieves the upper bound for the free rank distance.","PeriodicalId":92224,"journal":{"name":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Partial Unit Memory codes based on Gabidulin codes\",\"authors\":\"A. Wachter-Zeh, V. Sidorenko, M. Bossert, V. Zyablov\",\"doi\":\"10.1109/ISIT.2011.6034013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"(Partial) Unit Memory ((P)UM) codes provide a powerful possibility to construct convolutional codes based on block codes in order to achieve a high decoding performance. In this contribution, a construction based on Gabidulin codes is considered. This construction requires a modified rank metric, the so-called sum rank metric. For the sum rank metric, the free rank distance, the extended row rank distance and its slope are defined. Upper bounds for the free rank distance and the slope of (P)UM codes in the sum rank metric are derived. The construction of PUM codes based on Gabidulin codes achieves the upper bound for the free rank distance.\",\"PeriodicalId\":92224,\"journal\":{\"name\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2011.6034013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Information Theory and its Applications. International Symposium on Information Theory and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2011.6034013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

(部分)单元存储器((P)UM)码为基于分组码构建卷积码提供了强大的可能性,以实现高解码性能。在这个贡献中,考虑了基于Gabidulin代码的结构。这种构造需要一个修改的秩度量,即所谓的和秩度量。对于和秩度量,定义了自由秩距离、扩展行秩距离及其斜率。导出了秩和度量中(P)UM码的自由秩距离和斜率的上界。基于Gabidulin码的PUM码构造实现了自由秩距离的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Partial Unit Memory codes based on Gabidulin codes
(Partial) Unit Memory ((P)UM) codes provide a powerful possibility to construct convolutional codes based on block codes in order to achieve a high decoding performance. In this contribution, a construction based on Gabidulin codes is considered. This construction requires a modified rank metric, the so-called sum rank metric. For the sum rank metric, the free rank distance, the extended row rank distance and its slope are defined. Upper bounds for the free rank distance and the slope of (P)UM codes in the sum rank metric are derived. The construction of PUM codes based on Gabidulin codes achieves the upper bound for the free rank distance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信