{"title":"同时预测饱和醇在不同固定相上气相色谱保留指数的新型原子型拓扑描述子","authors":"F. Safa","doi":"10.22052/IJMC.2017.53844.1200","DOIUrl":null,"url":null,"abstract":"In this work, novel atom-type-based topological indices, named AT indices, were presented as descriptors to encode structural information of a molecule at the atomic level. The descriptors were successfully used for simultaneous quantitative structure-retention relationship (QSRR) modeling of saturated alcohols on different stationary phases (SE-30, OV-3, OV-7, OV-11, OV-17 and OV-25). At first, multiple linear regression models for Kovats retention index (RI) of alcohols on each stationary phase were separately developed using AT and Randic’s first-order molecular connectivity (1χ) indices. Adjusted correlation coefficient (R2adj) and standard error (SE) for the models were in the range of 0.994-0.999 and 4.40-8.90, respectively. Statistical validity of the models were verified by leave-one-out cross validation (R2cv > 0.99). In the next step, whole RI values on the stationary phases were combined to generate a new data set. Then, a unified model, added McReynolds polarity term as a descriptor, was developed for the new data set and the results were satisfactory (R2adj=0.995 and SE=8.55). External validation of the model resulted in the average values of 8.29 and 8.69 for standard errors of calibration and prediction, respectively. The topological indices well covered the molecular properties known to be relevant for retention indices of the model compounds.","PeriodicalId":14545,"journal":{"name":"Iranian journal of mathematical chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Novel Atom-Type-Based Topological Descriptors for Simultaneous Prediction of Gas Chromatographic Retention Indices of Saturated Alcohols on Different Stationary Phases\",\"authors\":\"F. Safa\",\"doi\":\"10.22052/IJMC.2017.53844.1200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, novel atom-type-based topological indices, named AT indices, were presented as descriptors to encode structural information of a molecule at the atomic level. The descriptors were successfully used for simultaneous quantitative structure-retention relationship (QSRR) modeling of saturated alcohols on different stationary phases (SE-30, OV-3, OV-7, OV-11, OV-17 and OV-25). At first, multiple linear regression models for Kovats retention index (RI) of alcohols on each stationary phase were separately developed using AT and Randic’s first-order molecular connectivity (1χ) indices. Adjusted correlation coefficient (R2adj) and standard error (SE) for the models were in the range of 0.994-0.999 and 4.40-8.90, respectively. Statistical validity of the models were verified by leave-one-out cross validation (R2cv > 0.99). In the next step, whole RI values on the stationary phases were combined to generate a new data set. Then, a unified model, added McReynolds polarity term as a descriptor, was developed for the new data set and the results were satisfactory (R2adj=0.995 and SE=8.55). External validation of the model resulted in the average values of 8.29 and 8.69 for standard errors of calibration and prediction, respectively. The topological indices well covered the molecular properties known to be relevant for retention indices of the model compounds.\",\"PeriodicalId\":14545,\"journal\":{\"name\":\"Iranian journal of mathematical chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iranian journal of mathematical chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22052/IJMC.2017.53844.1200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of mathematical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/IJMC.2017.53844.1200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Novel Atom-Type-Based Topological Descriptors for Simultaneous Prediction of Gas Chromatographic Retention Indices of Saturated Alcohols on Different Stationary Phases
In this work, novel atom-type-based topological indices, named AT indices, were presented as descriptors to encode structural information of a molecule at the atomic level. The descriptors were successfully used for simultaneous quantitative structure-retention relationship (QSRR) modeling of saturated alcohols on different stationary phases (SE-30, OV-3, OV-7, OV-11, OV-17 and OV-25). At first, multiple linear regression models for Kovats retention index (RI) of alcohols on each stationary phase were separately developed using AT and Randic’s first-order molecular connectivity (1χ) indices. Adjusted correlation coefficient (R2adj) and standard error (SE) for the models were in the range of 0.994-0.999 and 4.40-8.90, respectively. Statistical validity of the models were verified by leave-one-out cross validation (R2cv > 0.99). In the next step, whole RI values on the stationary phases were combined to generate a new data set. Then, a unified model, added McReynolds polarity term as a descriptor, was developed for the new data set and the results were satisfactory (R2adj=0.995 and SE=8.55). External validation of the model resulted in the average values of 8.29 and 8.69 for standard errors of calibration and prediction, respectively. The topological indices well covered the molecular properties known to be relevant for retention indices of the model compounds.