基于贝叶斯分类器的模式识别自动匹配模型在多核处理器上的并行编程

Kete Wang, Lisheng Wang, Xinkao Liao, George Albert
{"title":"基于贝叶斯分类器的模式识别自动匹配模型在多核处理器上的并行编程","authors":"Kete Wang, Lisheng Wang, Xinkao Liao, George Albert","doi":"10.4304/jnw.9.9.2556-2566","DOIUrl":null,"url":null,"abstract":"The emerging multi-core processor architecture has greatly escalated scientific computing, but, at the same time, made parallel programming increasingly complex and challenging. In this paper, the use of the Auto Parallel Classification (APC) model in an Object-Oriented Parallel Model (OOPModel) environment is demonstrated. A designed module provides a traversal and a reduction of the DAG task graph. The parallel characteristics vectors, which are analyzed according to Naive Bayesian classification theory, are critical parameters for matching and generating parallel design patterns and various skeletal frameworks. Through extensive experimentation, it is demonstrated, that by using the Map-Reduce pattern to develop a minimum-sort algorithm, in conjunction with the APC model, we can achieve a reduction in the complexity of parallel programming and the minimization of errors. Most importantly, through scientific experimentation, this document will further demonstrate that correct computational results and movements toward linear speed-up can be accomplished.","PeriodicalId":14643,"journal":{"name":"J. Networks","volume":"33 1","pages":"2556-2566"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Auto-Matching Model with Pattern Recognition Using Bayesian Classifier for Parallel Programming on A Multi-Core Processor\",\"authors\":\"Kete Wang, Lisheng Wang, Xinkao Liao, George Albert\",\"doi\":\"10.4304/jnw.9.9.2556-2566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emerging multi-core processor architecture has greatly escalated scientific computing, but, at the same time, made parallel programming increasingly complex and challenging. In this paper, the use of the Auto Parallel Classification (APC) model in an Object-Oriented Parallel Model (OOPModel) environment is demonstrated. A designed module provides a traversal and a reduction of the DAG task graph. The parallel characteristics vectors, which are analyzed according to Naive Bayesian classification theory, are critical parameters for matching and generating parallel design patterns and various skeletal frameworks. Through extensive experimentation, it is demonstrated, that by using the Map-Reduce pattern to develop a minimum-sort algorithm, in conjunction with the APC model, we can achieve a reduction in the complexity of parallel programming and the minimization of errors. Most importantly, through scientific experimentation, this document will further demonstrate that correct computational results and movements toward linear speed-up can be accomplished.\",\"PeriodicalId\":14643,\"journal\":{\"name\":\"J. Networks\",\"volume\":\"33 1\",\"pages\":\"2556-2566\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4304/jnw.9.9.2556-2566\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4304/jnw.9.9.2556-2566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

新兴的多核处理器体系结构极大地提升了科学计算的水平,但同时也使并行编程变得越来越复杂和具有挑战性。本文演示了自动并行分类(APC)模型在面向对象并行模型(OOPModel)环境中的应用。设计的模块提供DAG任务图的遍历和简化。根据朴素贝叶斯分类理论分析的并行特征向量是匹配和生成并行设计模式和各种骨架框架的关键参数。通过大量的实验证明,通过使用Map-Reduce模式开发一种最小排序算法,结合APC模型,我们可以实现并行编程复杂性的降低和错误的最小化。最重要的是,通过科学实验,本文将进一步证明正确的计算结果和线性加速的运动是可以实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Auto-Matching Model with Pattern Recognition Using Bayesian Classifier for Parallel Programming on A Multi-Core Processor
The emerging multi-core processor architecture has greatly escalated scientific computing, but, at the same time, made parallel programming increasingly complex and challenging. In this paper, the use of the Auto Parallel Classification (APC) model in an Object-Oriented Parallel Model (OOPModel) environment is demonstrated. A designed module provides a traversal and a reduction of the DAG task graph. The parallel characteristics vectors, which are analyzed according to Naive Bayesian classification theory, are critical parameters for matching and generating parallel design patterns and various skeletal frameworks. Through extensive experimentation, it is demonstrated, that by using the Map-Reduce pattern to develop a minimum-sort algorithm, in conjunction with the APC model, we can achieve a reduction in the complexity of parallel programming and the minimization of errors. Most importantly, through scientific experimentation, this document will further demonstrate that correct computational results and movements toward linear speed-up can be accomplished.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信