拉马努金图上截断的熵证明

N. Ozawa
{"title":"拉马努金图上截断的熵证明","authors":"N. Ozawa","doi":"10.1214/20-ecp358","DOIUrl":null,"url":null,"abstract":"It is recently proved by Lubetzky and Peres that the simple random walk on a Ramanujan graph exhibits a cutoff phenomenon, that is to say, the total variation distance of the random walk distribution from the uniform distribution drops abruptly from near $1$ to near $0$. There are already a few alternative proofs of this fact. In this note, we give yet another proof based on functional analysis and entropic consideration.","PeriodicalId":8470,"journal":{"name":"arXiv: Probability","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An entropic proof of cutoff on Ramanujan graphs\",\"authors\":\"N. Ozawa\",\"doi\":\"10.1214/20-ecp358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is recently proved by Lubetzky and Peres that the simple random walk on a Ramanujan graph exhibits a cutoff phenomenon, that is to say, the total variation distance of the random walk distribution from the uniform distribution drops abruptly from near $1$ to near $0$. There are already a few alternative proofs of this fact. In this note, we give yet another proof based on functional analysis and entropic consideration.\",\"PeriodicalId\":8470,\"journal\":{\"name\":\"arXiv: Probability\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/20-ecp358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/20-ecp358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

Lubetzky和Peres最近证明了Ramanujan图上的简单随机游走表现出截断现象,即随机游走分布与均匀分布的总变异距离从$1$附近突然下降到$0$附近。对于这一事实,已经有一些可供选择的证据。在本文中,我们基于泛函分析和熵的考虑给出另一个证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An entropic proof of cutoff on Ramanujan graphs
It is recently proved by Lubetzky and Peres that the simple random walk on a Ramanujan graph exhibits a cutoff phenomenon, that is to say, the total variation distance of the random walk distribution from the uniform distribution drops abruptly from near $1$ to near $0$. There are already a few alternative proofs of this fact. In this note, we give yet another proof based on functional analysis and entropic consideration.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信