电荷阱快闪存储器用氮化硅薄膜中电子阱态能量深度的电学分析

Kiyoteru Kobayashi, Soichiro Nakagawa
{"title":"电荷阱快闪存储器用氮化硅薄膜中电子阱态能量深度的电学分析","authors":"Kiyoteru Kobayashi, Soichiro Nakagawa","doi":"10.1109/NMDC50713.2021.9677530","DOIUrl":null,"url":null,"abstract":"The conduction current flowing through silicon nitride-silicon dioxide stacked films under negative gate bias at high temperatures has been analyzed and the electron transport mechanism in the stacked films has been studied. The trap depth for electrons in the silicon nitride film used in this work was estimated to be 1.3 eV, which was deeper as compared to that for holes (~1.0 eV). Next, the trap depths for electrons and holes in silicon nitride films with two different N/Si composition ratios were compared. Both trap states for electrons and holes were deeper in the silicon nitride film with the higher N/Si composition ratio. The analysis of the conduction current through silicon nitride-silicon dioxide stacked films is useful to evaluate the energy depth of trap states for electrons existing in silicon nitride films.","PeriodicalId":6742,"journal":{"name":"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)","volume":"13 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electrical analysis of energy depth of electron trap states in silicon nitride films for charge-trap flash memory application\",\"authors\":\"Kiyoteru Kobayashi, Soichiro Nakagawa\",\"doi\":\"10.1109/NMDC50713.2021.9677530\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conduction current flowing through silicon nitride-silicon dioxide stacked films under negative gate bias at high temperatures has been analyzed and the electron transport mechanism in the stacked films has been studied. The trap depth for electrons in the silicon nitride film used in this work was estimated to be 1.3 eV, which was deeper as compared to that for holes (~1.0 eV). Next, the trap depths for electrons and holes in silicon nitride films with two different N/Si composition ratios were compared. Both trap states for electrons and holes were deeper in the silicon nitride film with the higher N/Si composition ratio. The analysis of the conduction current through silicon nitride-silicon dioxide stacked films is useful to evaluate the energy depth of trap states for electrons existing in silicon nitride films.\",\"PeriodicalId\":6742,\"journal\":{\"name\":\"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)\",\"volume\":\"13 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NMDC50713.2021.9677530\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NMDC50713.2021.9677530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分析了高温负栅偏压下氮化硅-二氧化硅叠合膜的传导电流,研究了叠合膜中的电子传递机理。氮化硅薄膜中电子的陷阱深度估计为1.3 eV,比空穴(~1.0 eV)的陷阱深度要深。然后,比较了两种不同N/Si组成比的氮化硅薄膜中电子和空穴的陷阱深度。氮化硅薄膜中电子和空穴的阱态随着氮硅比的增大而加深。分析氮化硅-二氧化硅叠合薄膜的传导电流有助于评价氮化硅薄膜中电子的阱态能量深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electrical analysis of energy depth of electron trap states in silicon nitride films for charge-trap flash memory application
The conduction current flowing through silicon nitride-silicon dioxide stacked films under negative gate bias at high temperatures has been analyzed and the electron transport mechanism in the stacked films has been studied. The trap depth for electrons in the silicon nitride film used in this work was estimated to be 1.3 eV, which was deeper as compared to that for holes (~1.0 eV). Next, the trap depths for electrons and holes in silicon nitride films with two different N/Si composition ratios were compared. Both trap states for electrons and holes were deeper in the silicon nitride film with the higher N/Si composition ratio. The analysis of the conduction current through silicon nitride-silicon dioxide stacked films is useful to evaluate the energy depth of trap states for electrons existing in silicon nitride films.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信