RSM和ANN模型对水杨花种子活性炭吸附处理结晶紫染料模拟废水的预测能力评价

C. C. Okoye, O. Onukwuli, C. F. Okey-Onyesolu
{"title":"RSM和ANN模型对水杨花种子活性炭吸附处理结晶紫染料模拟废水的预测能力评价","authors":"C. C. Okoye, O. Onukwuli, C. F. Okey-Onyesolu","doi":"10.1080/22243682.2018.1497534","DOIUrl":null,"url":null,"abstract":"A comparative evaluation of the predictive capability of response surface methodology (RSM) and artificial neural network (ANN) in adsorptive treatment of dye simulated wastewater using acid activa...","PeriodicalId":17291,"journal":{"name":"Journal of the Chinese Advanced Materials Society","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Predictive capability evaluation of RSM and ANN models in adsorptive treatment of crystal violet dye simulated wastewater using activated carbon prepared from Raphia hookeri seeds\",\"authors\":\"C. C. Okoye, O. Onukwuli, C. F. Okey-Onyesolu\",\"doi\":\"10.1080/22243682.2018.1497534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A comparative evaluation of the predictive capability of response surface methodology (RSM) and artificial neural network (ANN) in adsorptive treatment of dye simulated wastewater using acid activa...\",\"PeriodicalId\":17291,\"journal\":{\"name\":\"Journal of the Chinese Advanced Materials Society\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Chinese Advanced Materials Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/22243682.2018.1497534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Chinese Advanced Materials Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/22243682.2018.1497534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

对比评价了响应面法(RSM)和人工神经网络(ANN)在酸性活性炭吸附处理染料模拟废水中的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive capability evaluation of RSM and ANN models in adsorptive treatment of crystal violet dye simulated wastewater using activated carbon prepared from Raphia hookeri seeds
A comparative evaluation of the predictive capability of response surface methodology (RSM) and artificial neural network (ANN) in adsorptive treatment of dye simulated wastewater using acid activa...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信