拓扑效应代数的新结果

IF 0.5 Q3 MATHEMATICS
S. Saidi Goraghani, R. Borzooei
{"title":"拓扑效应代数的新结果","authors":"S. Saidi Goraghani, R. Borzooei","doi":"10.52846/ami.v49i1.1482","DOIUrl":null,"url":null,"abstract":"In this paper, by considering the notion of effect algebra and by using of a new ideal in an effect algebra E, we construct a topology τ on E, and we show that (E,τ) is a topological effect algebra. Then we obtain some conditions under which that (E,τ) is a Hausdorff space. Also, we obtain some results about connected components of this topological space, and we construct a quotient topological effect algebra.","PeriodicalId":43654,"journal":{"name":"Annals of the University of Craiova-Mathematics and Computer Science Series","volume":"8 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New results on topological effect algebras\",\"authors\":\"S. Saidi Goraghani, R. Borzooei\",\"doi\":\"10.52846/ami.v49i1.1482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, by considering the notion of effect algebra and by using of a new ideal in an effect algebra E, we construct a topology τ on E, and we show that (E,τ) is a topological effect algebra. Then we obtain some conditions under which that (E,τ) is a Hausdorff space. Also, we obtain some results about connected components of this topological space, and we construct a quotient topological effect algebra.\",\"PeriodicalId\":43654,\"journal\":{\"name\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of the University of Craiova-Mathematics and Computer Science Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52846/ami.v49i1.1482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the University of Craiova-Mathematics and Computer Science Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52846/ami.v49i1.1482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑效应代数的概念,利用效应代数E中的一个新理想,构造了E上的拓扑τ,并证明了(E,τ)是拓扑效应代数。然后我们得到了(E,τ)是Hausdorff空间的一些条件。此外,我们还得到了该拓扑空间中连通分量的一些结果,并构造了一个商拓扑效应代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New results on topological effect algebras
In this paper, by considering the notion of effect algebra and by using of a new ideal in an effect algebra E, we construct a topology τ on E, and we show that (E,τ) is a topological effect algebra. Then we obtain some conditions under which that (E,τ) is a Hausdorff space. Also, we obtain some results about connected components of this topological space, and we construct a quotient topological effect algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
10.00%
发文量
18
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信