基于概率因果模型的高保真图像反事实

Fabio De Sousa Ribeiro, Tian Xia, M. Monteiro, Nick Pawlowski, B. Glocker
{"title":"基于概率因果模型的高保真图像反事实","authors":"Fabio De Sousa Ribeiro, Tian Xia, M. Monteiro, Nick Pawlowski, B. Glocker","doi":"10.48550/arXiv.2306.15764","DOIUrl":null,"url":null,"abstract":"We present a general causal generative modelling framework for accurate estimation of high fidelity image counterfactuals with deep structural causal models. Estimation of interventional and counterfactual queries for high-dimensional structured variables, such as images, remains a challenging task. We leverage ideas from causal mediation analysis and advances in generative modelling to design new deep causal mechanisms for structured variables in causal models. Our experiments demonstrate that our proposed mechanisms are capable of accurate abduction and estimation of direct, indirect and total effects as measured by axiomatic soundness of counterfactuals.","PeriodicalId":74529,"journal":{"name":"Proceedings of the ... International Conference on Machine Learning. International Conference on Machine Learning","volume":"16 1","pages":"7390-7425"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"High Fidelity Image Counterfactuals with Probabilistic Causal Models\",\"authors\":\"Fabio De Sousa Ribeiro, Tian Xia, M. Monteiro, Nick Pawlowski, B. Glocker\",\"doi\":\"10.48550/arXiv.2306.15764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a general causal generative modelling framework for accurate estimation of high fidelity image counterfactuals with deep structural causal models. Estimation of interventional and counterfactual queries for high-dimensional structured variables, such as images, remains a challenging task. We leverage ideas from causal mediation analysis and advances in generative modelling to design new deep causal mechanisms for structured variables in causal models. Our experiments demonstrate that our proposed mechanisms are capable of accurate abduction and estimation of direct, indirect and total effects as measured by axiomatic soundness of counterfactuals.\",\"PeriodicalId\":74529,\"journal\":{\"name\":\"Proceedings of the ... International Conference on Machine Learning. International Conference on Machine Learning\",\"volume\":\"16 1\",\"pages\":\"7390-7425\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... International Conference on Machine Learning. International Conference on Machine Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2306.15764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Conference on Machine Learning. International Conference on Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.15764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们提出了一个通用的因果生成建模框架,用于准确估计具有深层结构因果模型的高保真图像反事实。对高维结构化变量(如图像)的介入和反事实查询的估计仍然是一项具有挑战性的任务。我们利用因果中介分析的思想和生成模型的进展,为因果模型中的结构化变量设计新的深层因果机制。我们的实验表明,我们提出的机制能够准确地溯因和估计直接,间接和总影响,通过反事实的公理合理性来衡量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High Fidelity Image Counterfactuals with Probabilistic Causal Models
We present a general causal generative modelling framework for accurate estimation of high fidelity image counterfactuals with deep structural causal models. Estimation of interventional and counterfactual queries for high-dimensional structured variables, such as images, remains a challenging task. We leverage ideas from causal mediation analysis and advances in generative modelling to design new deep causal mechanisms for structured variables in causal models. Our experiments demonstrate that our proposed mechanisms are capable of accurate abduction and estimation of direct, indirect and total effects as measured by axiomatic soundness of counterfactuals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信