{"title":"与正半线上移位不变量空间相关的帧","authors":"O. Ahmad, Mobin Ahmad, Neyaz Ahmad","doi":"10.2478/ausm-2021-0002","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we introduce the notion of Walsh shift-invariant space and present a unified approach to the study of shift-invariant systems to be frames in L2(ℝ+). We obtain a necessary condition and three sufficient conditions under which the Walsh shift-invariant systems constitute frames for L2(ℝ+). Furthermore, we discuss applications of our main results to obtain some known conclusions about the Gabor frames and wavelet frames on positive half line.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Frames associated with shift invariant spaces on positive half line\",\"authors\":\"O. Ahmad, Mobin Ahmad, Neyaz Ahmad\",\"doi\":\"10.2478/ausm-2021-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we introduce the notion of Walsh shift-invariant space and present a unified approach to the study of shift-invariant systems to be frames in L2(ℝ+). We obtain a necessary condition and three sufficient conditions under which the Walsh shift-invariant systems constitute frames for L2(ℝ+). Furthermore, we discuss applications of our main results to obtain some known conclusions about the Gabor frames and wavelet frames on positive half line.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/ausm-2021-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2021-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Frames associated with shift invariant spaces on positive half line
Abstract In this paper, we introduce the notion of Walsh shift-invariant space and present a unified approach to the study of shift-invariant systems to be frames in L2(ℝ+). We obtain a necessary condition and three sufficient conditions under which the Walsh shift-invariant systems constitute frames for L2(ℝ+). Furthermore, we discuss applications of our main results to obtain some known conclusions about the Gabor frames and wavelet frames on positive half line.