{"title":"聚乳酸(PLA)长丝在聚合物基增材制造(AM)中的毫米波近场评价","authors":"F. Ahmadi, M.T. Al Qaseer, R. Zoughi","doi":"10.1080/09349847.2023.2189761","DOIUrl":null,"url":null,"abstract":"ABSTRACT Additive manufacturing (AM) remains to be a rapidly growing industry with applications that are extended beyond metals and to other materials, such as polymers, ceramics, and concrete, to name a few. However, advancement in the development of inspection techniques, particularly in-line nondestructive testing (NDT) methods, lags significantly. Most of the research in developing such methods has focused on metal-based AM. This paper investigates the efficacy of three high-resolution near-field millimeter-wave probes for detecting small voids in the feedstock polymeric filaments used for AM. The electromagnetic (EM) design and optimization of these probes are discussed in this paper. The design of the probes is based on concentrating the interrogating electric field of an open-ended waveguide in a small region corresponding to the area of a thin dielectric slab insert. This results in achieving a higher spatial resolution than when using only the open-ended waveguide. Extending the dielectric slab to an optimum value out of the waveguide makes the electric field more concentrated and potentially further improves the spatial resolution. These modifications also reduce the detection sensitivity as a function of increasing standoff distance. However, the spatial resolution of these probes varies more rapidly as the standoff distance increases. Subsequently, the efficacy of these three probes was studied and compared using a comprehensive set of numerical EM simulations at V-band (50–75 GHz). Afterward, three such probes were fabricated, at V-band (50–75 GHz), and were used to measure the reflection responses of the stock Polylactic Acid (PLA) filaments with a very small hemispherical surface void. Root-Mean-Squared-Error (RMSE), between reference and defective filaments and over the simulated and measured frequency range, was calculated as a criterion to compare the detection capability of the three probes in the entire frequency band. The results showed that at V-band (50–75 GHz) the spatial resolution of the standard open-ended rectangular waveguide is deemed sufficient detecting small surface voids of the stock PLA filaments.","PeriodicalId":54493,"journal":{"name":"Research in Nondestructive Evaluation","volume":"4 1","pages":"67 - 82"},"PeriodicalIF":1.0000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Millimeter-Wave Near-Field Evaluations of Polylactic Acid (PLA) Filament Used in Polymer-Based Additive Manufacturing (AM)\",\"authors\":\"F. Ahmadi, M.T. Al Qaseer, R. Zoughi\",\"doi\":\"10.1080/09349847.2023.2189761\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Additive manufacturing (AM) remains to be a rapidly growing industry with applications that are extended beyond metals and to other materials, such as polymers, ceramics, and concrete, to name a few. However, advancement in the development of inspection techniques, particularly in-line nondestructive testing (NDT) methods, lags significantly. Most of the research in developing such methods has focused on metal-based AM. This paper investigates the efficacy of three high-resolution near-field millimeter-wave probes for detecting small voids in the feedstock polymeric filaments used for AM. The electromagnetic (EM) design and optimization of these probes are discussed in this paper. The design of the probes is based on concentrating the interrogating electric field of an open-ended waveguide in a small region corresponding to the area of a thin dielectric slab insert. This results in achieving a higher spatial resolution than when using only the open-ended waveguide. Extending the dielectric slab to an optimum value out of the waveguide makes the electric field more concentrated and potentially further improves the spatial resolution. These modifications also reduce the detection sensitivity as a function of increasing standoff distance. However, the spatial resolution of these probes varies more rapidly as the standoff distance increases. Subsequently, the efficacy of these three probes was studied and compared using a comprehensive set of numerical EM simulations at V-band (50–75 GHz). Afterward, three such probes were fabricated, at V-band (50–75 GHz), and were used to measure the reflection responses of the stock Polylactic Acid (PLA) filaments with a very small hemispherical surface void. Root-Mean-Squared-Error (RMSE), between reference and defective filaments and over the simulated and measured frequency range, was calculated as a criterion to compare the detection capability of the three probes in the entire frequency band. The results showed that at V-band (50–75 GHz) the spatial resolution of the standard open-ended rectangular waveguide is deemed sufficient detecting small surface voids of the stock PLA filaments.\",\"PeriodicalId\":54493,\"journal\":{\"name\":\"Research in Nondestructive Evaluation\",\"volume\":\"4 1\",\"pages\":\"67 - 82\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09349847.2023.2189761\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09349847.2023.2189761","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Millimeter-Wave Near-Field Evaluations of Polylactic Acid (PLA) Filament Used in Polymer-Based Additive Manufacturing (AM)
ABSTRACT Additive manufacturing (AM) remains to be a rapidly growing industry with applications that are extended beyond metals and to other materials, such as polymers, ceramics, and concrete, to name a few. However, advancement in the development of inspection techniques, particularly in-line nondestructive testing (NDT) methods, lags significantly. Most of the research in developing such methods has focused on metal-based AM. This paper investigates the efficacy of three high-resolution near-field millimeter-wave probes for detecting small voids in the feedstock polymeric filaments used for AM. The electromagnetic (EM) design and optimization of these probes are discussed in this paper. The design of the probes is based on concentrating the interrogating electric field of an open-ended waveguide in a small region corresponding to the area of a thin dielectric slab insert. This results in achieving a higher spatial resolution than when using only the open-ended waveguide. Extending the dielectric slab to an optimum value out of the waveguide makes the electric field more concentrated and potentially further improves the spatial resolution. These modifications also reduce the detection sensitivity as a function of increasing standoff distance. However, the spatial resolution of these probes varies more rapidly as the standoff distance increases. Subsequently, the efficacy of these three probes was studied and compared using a comprehensive set of numerical EM simulations at V-band (50–75 GHz). Afterward, three such probes were fabricated, at V-band (50–75 GHz), and were used to measure the reflection responses of the stock Polylactic Acid (PLA) filaments with a very small hemispherical surface void. Root-Mean-Squared-Error (RMSE), between reference and defective filaments and over the simulated and measured frequency range, was calculated as a criterion to compare the detection capability of the three probes in the entire frequency band. The results showed that at V-band (50–75 GHz) the spatial resolution of the standard open-ended rectangular waveguide is deemed sufficient detecting small surface voids of the stock PLA filaments.
期刊介绍:
Research in Nondestructive Evaluation® is the archival research journal of the American Society for Nondestructive Testing, Inc. RNDE® contains the results of original research in all areas of nondestructive evaluation (NDE). The journal covers experimental and theoretical investigations dealing with the scientific and engineering bases of NDE, its measurement and methodology, and a wide range of applications to materials and structures that relate to the entire life cycle, from manufacture to use and retirement.
Illustrative topics include advances in the underlying science of acoustic, thermal, electrical, magnetic, optical and ionizing radiation techniques and their applications to NDE problems. These problems include the nondestructive characterization of a wide variety of material properties and their degradation in service, nonintrusive sensors for monitoring manufacturing and materials processes, new techniques and combinations of techniques for detecting and characterizing hidden discontinuities and distributed damage in materials, standardization concepts and quantitative approaches for advanced NDE techniques, and long-term continuous monitoring of structures and assemblies. Of particular interest is research which elucidates how to evaluate the effects of imperfect material condition, as quantified by nondestructive measurement, on the functional performance.