使用稀疏非高斯状态空间模型预测加密货币

Christian Hotz-Behofsits, Florian Huber, Thomas O. Zorner
{"title":"使用稀疏非高斯状态空间模型预测加密货币","authors":"Christian Hotz-Behofsits, Florian Huber, Thomas O. Zorner","doi":"10.1002/FOR.2524","DOIUrl":null,"url":null,"abstract":"In this paper we forecast daily returns of crypto-currencies using a wide variety of different econometric models. To capture salient features commonly observed in financial time series like rapid changes in the conditional variance, non-normality of the measurement errors and sharply increasing trends, we develop a time-varying parameter VAR with t-distributed measurement errors and stochastic volatility. To control for overparameterization, we rely on the Bayesian literature on shrinkage priors that enables us to shrink coefficients associated with irrelevant predictors and/or perform model specification in a flexible manner. Using around one year of daily data we perform a real-time forecasting exercise and investigate whether any of the proposed models is able to outperform the naive random walk benchmark. To assess the economic relevance of the forecasting gains produced by the proposed models we moreover run a simple trading exercise.","PeriodicalId":8448,"journal":{"name":"arXiv: Econometrics","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"Predicting crypto-currencies using sparse non-Gaussian state space models\",\"authors\":\"Christian Hotz-Behofsits, Florian Huber, Thomas O. Zorner\",\"doi\":\"10.1002/FOR.2524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we forecast daily returns of crypto-currencies using a wide variety of different econometric models. To capture salient features commonly observed in financial time series like rapid changes in the conditional variance, non-normality of the measurement errors and sharply increasing trends, we develop a time-varying parameter VAR with t-distributed measurement errors and stochastic volatility. To control for overparameterization, we rely on the Bayesian literature on shrinkage priors that enables us to shrink coefficients associated with irrelevant predictors and/or perform model specification in a flexible manner. Using around one year of daily data we perform a real-time forecasting exercise and investigate whether any of the proposed models is able to outperform the naive random walk benchmark. To assess the economic relevance of the forecasting gains produced by the proposed models we moreover run a simple trading exercise.\",\"PeriodicalId\":8448,\"journal\":{\"name\":\"arXiv: Econometrics\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/FOR.2524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/FOR.2524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

在本文中,我们使用各种不同的计量经济学模型预测加密货币的日收益。为了捕捉金融时间序列中常见的显著特征,如条件方差的快速变化、测量误差的非正态性和急剧增加的趋势,我们开发了一个具有t分布测量误差和随机波动率的时变参数VAR。为了控制过度参数化,我们依赖于收缩先验的贝叶斯文献,这使我们能够收缩与不相关预测因子相关的系数和/或以灵活的方式执行模型规范。使用大约一年的日常数据,我们进行实时预测练习,并调查是否有任何提出的模型能够优于朴素随机漫步基准。为了评估所提出的模型所产生的预测收益的经济相关性,我们还进行了一个简单的交易练习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting crypto-currencies using sparse non-Gaussian state space models
In this paper we forecast daily returns of crypto-currencies using a wide variety of different econometric models. To capture salient features commonly observed in financial time series like rapid changes in the conditional variance, non-normality of the measurement errors and sharply increasing trends, we develop a time-varying parameter VAR with t-distributed measurement errors and stochastic volatility. To control for overparameterization, we rely on the Bayesian literature on shrinkage priors that enables us to shrink coefficients associated with irrelevant predictors and/or perform model specification in a flexible manner. Using around one year of daily data we perform a real-time forecasting exercise and investigate whether any of the proposed models is able to outperform the naive random walk benchmark. To assess the economic relevance of the forecasting gains produced by the proposed models we moreover run a simple trading exercise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信