{"title":"Stein 1956:有效的非参数检验和估计","authors":"A. Vaart, J. Wellner","doi":"10.1214/21-aos2056","DOIUrl":null,"url":null,"abstract":"Under some regularity conditions (Stein refers to [33]), the maximum likelihood estimator θ̂n based on an i.i.d. sample X1, . . . ,Xn from pθ satisfies that √ n(θ̂n − θ) tends to a normal distribution with mean zero and variance ∇φ(θ)T I−1 θ ∇φ(θ), and hence attains this bound. Even if the parameter set may be multi-dimensional, this lower bound for estimation of a real-valued parameter φ(θ) can already be obtained from considering a one-dimensional","PeriodicalId":22375,"journal":{"name":"The Annals of Statistics","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stein 1956: Efficient nonparametric testing and estimation\",\"authors\":\"A. Vaart, J. Wellner\",\"doi\":\"10.1214/21-aos2056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under some regularity conditions (Stein refers to [33]), the maximum likelihood estimator θ̂n based on an i.i.d. sample X1, . . . ,Xn from pθ satisfies that √ n(θ̂n − θ) tends to a normal distribution with mean zero and variance ∇φ(θ)T I−1 θ ∇φ(θ), and hence attains this bound. Even if the parameter set may be multi-dimensional, this lower bound for estimation of a real-valued parameter φ(θ) can already be obtained from considering a one-dimensional\",\"PeriodicalId\":22375,\"journal\":{\"name\":\"The Annals of Statistics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Annals of Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/21-aos2056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/21-aos2056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stein 1956: Efficient nonparametric testing and estimation
Under some regularity conditions (Stein refers to [33]), the maximum likelihood estimator θ̂n based on an i.i.d. sample X1, . . . ,Xn from pθ satisfies that √ n(θ̂n − θ) tends to a normal distribution with mean zero and variance ∇φ(θ)T I−1 θ ∇φ(θ), and hence attains this bound. Even if the parameter set may be multi-dimensional, this lower bound for estimation of a real-valued parameter φ(θ) can already be obtained from considering a one-dimensional