复射影平面上列维平面超曲面的嵌入(附l′aszl′o lempert)

IF 0.2 Q4 MATHEMATICS
A. Iordan
{"title":"复射影平面上列维平面超曲面的嵌入(附l′aszl′o lempert)","authors":"A. Iordan","doi":"10.59277/rrmpa.2023.95.114","DOIUrl":null,"url":null,"abstract":"Let L be a hypothetical smooth Levi flat hypersurface in CP2 and r the signed distance to L by means of the Fubini-Study metric g. Denote Lru = cru the second order elliptic equation for the infinitesimal Levi-flat deformations of L, where cr = dbJbr + br ∧ Jbr, br = ιXrdγr, Xr = gradgr/ ∥gradgr∥2 g, γr is the restriction of dcr to L and db is the differentiation along the leafs of the Levi foliation. Then −cr ≥ H as leaf-wise (1, 1)-forms, where H is the holomorphic bisectional curvature of CP2. We give also an example of a Levi-flat manifold L of dimension 3 verifying that there exists a (1, 0)-form α on L such that ∂α is a K¨ahler form on every leaf of the Levi foliation, but L is not embeddable in CP2.","PeriodicalId":45738,"journal":{"name":"REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES","volume":"44 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON THE EMBEDDING OF LEVI-FLAT HYPERSURFACES IN THE COMPLEX PROJECTIVE PLANE (AND AN APPENDIX WITH L´ASZL´O LEMPERT)\",\"authors\":\"A. Iordan\",\"doi\":\"10.59277/rrmpa.2023.95.114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let L be a hypothetical smooth Levi flat hypersurface in CP2 and r the signed distance to L by means of the Fubini-Study metric g. Denote Lru = cru the second order elliptic equation for the infinitesimal Levi-flat deformations of L, where cr = dbJbr + br ∧ Jbr, br = ιXrdγr, Xr = gradgr/ ∥gradgr∥2 g, γr is the restriction of dcr to L and db is the differentiation along the leafs of the Levi foliation. Then −cr ≥ H as leaf-wise (1, 1)-forms, where H is the holomorphic bisectional curvature of CP2. We give also an example of a Levi-flat manifold L of dimension 3 verifying that there exists a (1, 0)-form α on L such that ∂α is a K¨ahler form on every leaf of the Levi foliation, but L is not embeddable in CP2.\",\"PeriodicalId\":45738,\"journal\":{\"name\":\"REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59277/rrmpa.2023.95.114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59277/rrmpa.2023.95.114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设L为CP2中的光滑Levi平坦超曲面,r为利用Fubini-Study度量g到L的带符号距离。设Lru = cru为L的无限小Levi-平坦变形的二阶椭圆方程,其中cr = dbJbr + br∧Jbr, br = ιXrdγr, Xr = gradgr/∥gradgr∥2g, γr为dcr对L的限制,db为Levi叶理沿叶的微分。则−cr≥H为叶向(1,1)型,其中H为CP2的全纯等分曲率。我们还给出了一个3维的列维平面流形L的例子,证明在L上存在一个(1,0)-形式α,使得∂α在列维叶的每一个叶上都是K¨ahler形式,但L不能嵌入到CP2中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON THE EMBEDDING OF LEVI-FLAT HYPERSURFACES IN THE COMPLEX PROJECTIVE PLANE (AND AN APPENDIX WITH L´ASZL´O LEMPERT)
Let L be a hypothetical smooth Levi flat hypersurface in CP2 and r the signed distance to L by means of the Fubini-Study metric g. Denote Lru = cru the second order elliptic equation for the infinitesimal Levi-flat deformations of L, where cr = dbJbr + br ∧ Jbr, br = ιXrdγr, Xr = gradgr/ ∥gradgr∥2 g, γr is the restriction of dcr to L and db is the differentiation along the leafs of the Levi foliation. Then −cr ≥ H as leaf-wise (1, 1)-forms, where H is the holomorphic bisectional curvature of CP2. We give also an example of a Levi-flat manifold L of dimension 3 verifying that there exists a (1, 0)-form α on L such that ∂α is a K¨ahler form on every leaf of the Levi foliation, but L is not embeddable in CP2.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信