挖掘有意义角色的算法

Zhongyuan Xu, S. Stoller
{"title":"挖掘有意义角色的算法","authors":"Zhongyuan Xu, S. Stoller","doi":"10.1145/2295136.2295146","DOIUrl":null,"url":null,"abstract":"Role-based access control (RBAC) offers significant advantages over lower-level access control policy representations, such as access control lists (ACLs). However, the effort required for a large organization to migrate from ACLs to RBAC can be a significant obstacle to adoption of RBAC. Role mining algorithms partially automate the construction of an RBAC policy from an ACL policy and possibly other information, such as user attributes. These algorithms can significantly reduce the cost of migration to RBAC.\n This paper proposes new algorithms for role mining. The algorithms can easily be used to optimize a variety of policy quality metrics, including metrics based on policy size, metrics based on interpretability of the roles with respect to user attribute data, and compound metrics that consider size and interpretability. The algorithms all begin with a phase that constructs a set of candidate roles. We consider two strategies for the second phase: start with an empty policy and repeatedly add candidate roles, or start with the entire set of candidate roles and repeatedly remove roles. In experiments with publicly available access control policies, we find that the elimination approach produces better results, and that, for a policy quality metric that reflects size and interpretability, our elimination algorithm achieves significantly better results than previous work.","PeriodicalId":74509,"journal":{"name":"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies","volume":"17 1","pages":"57-66"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":"{\"title\":\"Algorithms for mining meaningful roles\",\"authors\":\"Zhongyuan Xu, S. Stoller\",\"doi\":\"10.1145/2295136.2295146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Role-based access control (RBAC) offers significant advantages over lower-level access control policy representations, such as access control lists (ACLs). However, the effort required for a large organization to migrate from ACLs to RBAC can be a significant obstacle to adoption of RBAC. Role mining algorithms partially automate the construction of an RBAC policy from an ACL policy and possibly other information, such as user attributes. These algorithms can significantly reduce the cost of migration to RBAC.\\n This paper proposes new algorithms for role mining. The algorithms can easily be used to optimize a variety of policy quality metrics, including metrics based on policy size, metrics based on interpretability of the roles with respect to user attribute data, and compound metrics that consider size and interpretability. The algorithms all begin with a phase that constructs a set of candidate roles. We consider two strategies for the second phase: start with an empty policy and repeatedly add candidate roles, or start with the entire set of candidate roles and repeatedly remove roles. In experiments with publicly available access control policies, we find that the elimination approach produces better results, and that, for a policy quality metric that reflects size and interpretability, our elimination algorithm achieves significantly better results than previous work.\",\"PeriodicalId\":74509,\"journal\":{\"name\":\"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies\",\"volume\":\"17 1\",\"pages\":\"57-66\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"55\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2295136.2295146\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... ACM symposium on access control models and technologies. ACM Symposium on Access Control Models and Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2295136.2295146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

摘要

基于角色的访问控制(RBAC)与低级访问控制策略表示(如访问控制列表(acl))相比具有显著的优势。然而,大型组织从acl迁移到RBAC所需的努力可能是采用RBAC的一个重大障碍。角色挖掘算法可以从ACL策略和可能的其他信息(如用户属性)部分地自动化构建RBAC策略。这些算法可以显著降低迁移到RBAC的成本。本文提出了新的角色挖掘算法。这些算法可以很容易地用于优化各种策略质量度量,包括基于策略大小的度量、基于角色相对于用户属性数据的可解释性的度量,以及考虑大小和可解释性的复合度量。这些算法都是从构造一组候选角色的阶段开始的。我们考虑第二阶段的两种策略:从空策略开始并反复添加候选角色,或者从整个候选角色集开始并反复删除角色。在公开访问控制策略的实验中,我们发现消除方法产生了更好的结果,并且,对于反映大小和可解释性的策略质量度量,我们的消除算法取得了比以前的工作更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithms for mining meaningful roles
Role-based access control (RBAC) offers significant advantages over lower-level access control policy representations, such as access control lists (ACLs). However, the effort required for a large organization to migrate from ACLs to RBAC can be a significant obstacle to adoption of RBAC. Role mining algorithms partially automate the construction of an RBAC policy from an ACL policy and possibly other information, such as user attributes. These algorithms can significantly reduce the cost of migration to RBAC. This paper proposes new algorithms for role mining. The algorithms can easily be used to optimize a variety of policy quality metrics, including metrics based on policy size, metrics based on interpretability of the roles with respect to user attribute data, and compound metrics that consider size and interpretability. The algorithms all begin with a phase that constructs a set of candidate roles. We consider two strategies for the second phase: start with an empty policy and repeatedly add candidate roles, or start with the entire set of candidate roles and repeatedly remove roles. In experiments with publicly available access control policies, we find that the elimination approach produces better results, and that, for a policy quality metric that reflects size and interpretability, our elimination algorithm achieves significantly better results than previous work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信