B. Janecke, J. Tol, I. Smit, A. V. Aardt, E. Riddell, M. Seaman, W. Swart, P. D. Preez, P. L. Roux
{"title":"花岗岩链上的生物和非生物连接:多学科研究框架","authors":"B. Janecke, J. Tol, I. Smit, A. V. Aardt, E. Riddell, M. Seaman, W. Swart, P. D. Preez, P. L. Roux","doi":"10.4102/koedoe.v62i2.1600","DOIUrl":null,"url":null,"abstract":"The concept of savanna heterogeneity has been fundamental in how this has informed the management of the Kruger National Park (KNP), and has influenced, for example, how fire, artificial surface water and large herbivores are managed to maintain, mimic or, in some cases, restore inherent heterogeneity. For an overview of the concepts of heterogeneity in the savanna context on different levels from a fine to a broader scale, and how that has influenced thinking and management of the KNP, see Du Toit, Rogers and Biggs (ed. 2003) and Rogers (2003). ‘Heterogeneity’ is a broad term, but can comprise differences and interactions between soil types and properties, vegetation composition and structure, patchiness and patterns, sub-habitats, animal presence and so on. Local environmental gradients on a catenal scale create ecological patterns from the crest to the stream of the hillslope. Bottom-up drivers interact with top-down controls to give rise to these patterns. A multidisciplinary project was conducted to study the processes that govern functioning, structure and heterogeneity on a catena in a third-order catchment in the Southern Granite Supersite in the Kruger National Park. The project included abiotic components (e.g. groundwater-surface water interactions, soil chemical and physical properties) as well as biotic components (e.g. soil microbes, small aquatic organisms in ephemeral pools, plant communities, vegetation structure and mammal diversity). Each of these components was investigated in detail along the catenal gradient and reported on in separate articles in this special issue. The drought of 2015–2016 occurred during the sampling period of the study and information on the response of vegetation and mammals to the drought were included. In this article, a synthesis of findings from the separate components or disciplines is provided to highlight the interactive functioning and ecological patterns of the catena. These findings were then used to develop a framework for multidisciplinary studies in similar environments. The framework highlights the interactive relationships between various components of the ecosystem and the importance of a multidisciplinary approach.","PeriodicalId":48892,"journal":{"name":"Koedoe","volume":"54 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Biotic and abiotic connections on a granitic catena: Framework for multidisciplinary research\",\"authors\":\"B. Janecke, J. Tol, I. Smit, A. V. Aardt, E. Riddell, M. Seaman, W. Swart, P. D. Preez, P. L. Roux\",\"doi\":\"10.4102/koedoe.v62i2.1600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The concept of savanna heterogeneity has been fundamental in how this has informed the management of the Kruger National Park (KNP), and has influenced, for example, how fire, artificial surface water and large herbivores are managed to maintain, mimic or, in some cases, restore inherent heterogeneity. For an overview of the concepts of heterogeneity in the savanna context on different levels from a fine to a broader scale, and how that has influenced thinking and management of the KNP, see Du Toit, Rogers and Biggs (ed. 2003) and Rogers (2003). ‘Heterogeneity’ is a broad term, but can comprise differences and interactions between soil types and properties, vegetation composition and structure, patchiness and patterns, sub-habitats, animal presence and so on. Local environmental gradients on a catenal scale create ecological patterns from the crest to the stream of the hillslope. Bottom-up drivers interact with top-down controls to give rise to these patterns. A multidisciplinary project was conducted to study the processes that govern functioning, structure and heterogeneity on a catena in a third-order catchment in the Southern Granite Supersite in the Kruger National Park. The project included abiotic components (e.g. groundwater-surface water interactions, soil chemical and physical properties) as well as biotic components (e.g. soil microbes, small aquatic organisms in ephemeral pools, plant communities, vegetation structure and mammal diversity). Each of these components was investigated in detail along the catenal gradient and reported on in separate articles in this special issue. The drought of 2015–2016 occurred during the sampling period of the study and information on the response of vegetation and mammals to the drought were included. In this article, a synthesis of findings from the separate components or disciplines is provided to highlight the interactive functioning and ecological patterns of the catena. These findings were then used to develop a framework for multidisciplinary studies in similar environments. The framework highlights the interactive relationships between various components of the ecosystem and the importance of a multidisciplinary approach.\",\"PeriodicalId\":48892,\"journal\":{\"name\":\"Koedoe\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Koedoe\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.4102/koedoe.v62i2.1600\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Koedoe","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.4102/koedoe.v62i2.1600","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Biotic and abiotic connections on a granitic catena: Framework for multidisciplinary research
The concept of savanna heterogeneity has been fundamental in how this has informed the management of the Kruger National Park (KNP), and has influenced, for example, how fire, artificial surface water and large herbivores are managed to maintain, mimic or, in some cases, restore inherent heterogeneity. For an overview of the concepts of heterogeneity in the savanna context on different levels from a fine to a broader scale, and how that has influenced thinking and management of the KNP, see Du Toit, Rogers and Biggs (ed. 2003) and Rogers (2003). ‘Heterogeneity’ is a broad term, but can comprise differences and interactions between soil types and properties, vegetation composition and structure, patchiness and patterns, sub-habitats, animal presence and so on. Local environmental gradients on a catenal scale create ecological patterns from the crest to the stream of the hillslope. Bottom-up drivers interact with top-down controls to give rise to these patterns. A multidisciplinary project was conducted to study the processes that govern functioning, structure and heterogeneity on a catena in a third-order catchment in the Southern Granite Supersite in the Kruger National Park. The project included abiotic components (e.g. groundwater-surface water interactions, soil chemical and physical properties) as well as biotic components (e.g. soil microbes, small aquatic organisms in ephemeral pools, plant communities, vegetation structure and mammal diversity). Each of these components was investigated in detail along the catenal gradient and reported on in separate articles in this special issue. The drought of 2015–2016 occurred during the sampling period of the study and information on the response of vegetation and mammals to the drought were included. In this article, a synthesis of findings from the separate components or disciplines is provided to highlight the interactive functioning and ecological patterns of the catena. These findings were then used to develop a framework for multidisciplinary studies in similar environments. The framework highlights the interactive relationships between various components of the ecosystem and the importance of a multidisciplinary approach.
期刊介绍:
Koedoe, with the subtitle ''African Protected Area Conservation and Science'', promotes and contributes to the scientific (biological) and environmental (ecological and biodiversity) conservation practices of Africa by defining the key disciplines that will ensure the existence of a wide variety of plant and animal species in their natural environments (biological diversity) in Africa.