Zhenhua Xu, Shenghe Wu, Quanlin Wang, Pan Zhang, Meng Deng, W. Feng, Jiajia Zhang, Changmin Zhang
{"title":"数字化浅水三角洲坝指内部构造模式——来自赣江三角洲浅核、GPR和Delft3D模拟数据的启示","authors":"Zhenhua Xu, Shenghe Wu, Quanlin Wang, Pan Zhang, Meng Deng, W. Feng, Jiajia Zhang, Changmin Zhang","doi":"10.2113/2022/9120724","DOIUrl":null,"url":null,"abstract":"\n Digitate shallow-water deltas are commonly found in modern lakes and bays, as well as within cratonic petroliferous basins. They develop one or multiple sinuous finger-like sands (i.e., bar fingers), including high-RSI (sinuosity ratio of distributary channel and bar finger ≥1) and low-RSI (RSI < 1) types. Bar fingers consist of four types of subenvironments, that is, distributary channels, point bars, mouth bars, and levees. However, the internal architecture within the above subenvironments is still unclear. This paper documents the internal architecture of a digitate delta based on the integration of shallow-core and ground-penetrating radar data from the Ganjiang Delta, China, coupled with Delft3D simulations. Our results show that multiple convex-up muddy-silty accretion beds are developed in mouth bars, which top lap the side of the distributary channels or point bars and down lap the bottom of the mouth bar. The accretion beds have low dip angles (<2°), which is slightly higher for the upper accretion beds. Point bars, unique to the high-RSI bar finger, develop multiple inclined silty drapes, which top lap the top of the point bar. The cohesive levee and backwater effect impede the migration of the distributary channel, resulting in silty drapes with high-dip angles (can be >10°) compared with those in the supplying river. This dip angle exhibits a negative relationship with downstream distance and a positive exponential relationship with lateral migration distance. Silty drapes become dense along the migration direction of the distributary channel. The levee develops multiple horizontal muddy accretion beds. The high-RSI bar finger develops a large number (>3) of accretion beds in mouth bars with high dip angles, and a large number of accretion beds in thick levees, compared with the low-RSI bar finger. The results of this paper provide insights into the prediction and development of cratonic digitate shallow-water delta reservoirs.","PeriodicalId":18147,"journal":{"name":"Lithosphere","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Internal Architectural Patterns of Bar Fingers Within Digitate Shallow-Water Delta: Insights from the Shallow Core, GPR and Delft3D Simulation Data of the Ganjiang Delta, China\",\"authors\":\"Zhenhua Xu, Shenghe Wu, Quanlin Wang, Pan Zhang, Meng Deng, W. Feng, Jiajia Zhang, Changmin Zhang\",\"doi\":\"10.2113/2022/9120724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Digitate shallow-water deltas are commonly found in modern lakes and bays, as well as within cratonic petroliferous basins. They develop one or multiple sinuous finger-like sands (i.e., bar fingers), including high-RSI (sinuosity ratio of distributary channel and bar finger ≥1) and low-RSI (RSI < 1) types. Bar fingers consist of four types of subenvironments, that is, distributary channels, point bars, mouth bars, and levees. However, the internal architecture within the above subenvironments is still unclear. This paper documents the internal architecture of a digitate delta based on the integration of shallow-core and ground-penetrating radar data from the Ganjiang Delta, China, coupled with Delft3D simulations. Our results show that multiple convex-up muddy-silty accretion beds are developed in mouth bars, which top lap the side of the distributary channels or point bars and down lap the bottom of the mouth bar. The accretion beds have low dip angles (<2°), which is slightly higher for the upper accretion beds. Point bars, unique to the high-RSI bar finger, develop multiple inclined silty drapes, which top lap the top of the point bar. The cohesive levee and backwater effect impede the migration of the distributary channel, resulting in silty drapes with high-dip angles (can be >10°) compared with those in the supplying river. This dip angle exhibits a negative relationship with downstream distance and a positive exponential relationship with lateral migration distance. Silty drapes become dense along the migration direction of the distributary channel. The levee develops multiple horizontal muddy accretion beds. The high-RSI bar finger develops a large number (>3) of accretion beds in mouth bars with high dip angles, and a large number of accretion beds in thick levees, compared with the low-RSI bar finger. The results of this paper provide insights into the prediction and development of cratonic digitate shallow-water delta reservoirs.\",\"PeriodicalId\":18147,\"journal\":{\"name\":\"Lithosphere\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lithosphere\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.2113/2022/9120724\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithosphere","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.2113/2022/9120724","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Internal Architectural Patterns of Bar Fingers Within Digitate Shallow-Water Delta: Insights from the Shallow Core, GPR and Delft3D Simulation Data of the Ganjiang Delta, China
Digitate shallow-water deltas are commonly found in modern lakes and bays, as well as within cratonic petroliferous basins. They develop one or multiple sinuous finger-like sands (i.e., bar fingers), including high-RSI (sinuosity ratio of distributary channel and bar finger ≥1) and low-RSI (RSI < 1) types. Bar fingers consist of four types of subenvironments, that is, distributary channels, point bars, mouth bars, and levees. However, the internal architecture within the above subenvironments is still unclear. This paper documents the internal architecture of a digitate delta based on the integration of shallow-core and ground-penetrating radar data from the Ganjiang Delta, China, coupled with Delft3D simulations. Our results show that multiple convex-up muddy-silty accretion beds are developed in mouth bars, which top lap the side of the distributary channels or point bars and down lap the bottom of the mouth bar. The accretion beds have low dip angles (<2°), which is slightly higher for the upper accretion beds. Point bars, unique to the high-RSI bar finger, develop multiple inclined silty drapes, which top lap the top of the point bar. The cohesive levee and backwater effect impede the migration of the distributary channel, resulting in silty drapes with high-dip angles (can be >10°) compared with those in the supplying river. This dip angle exhibits a negative relationship with downstream distance and a positive exponential relationship with lateral migration distance. Silty drapes become dense along the migration direction of the distributary channel. The levee develops multiple horizontal muddy accretion beds. The high-RSI bar finger develops a large number (>3) of accretion beds in mouth bars with high dip angles, and a large number of accretion beds in thick levees, compared with the low-RSI bar finger. The results of this paper provide insights into the prediction and development of cratonic digitate shallow-water delta reservoirs.
期刊介绍:
The open access journal will have an expanded scope covering research in all areas of earth, planetary, and environmental sciences, providing a unique publishing choice for authors in the geoscience community.