{"title":"仿射GARCH模型中套期保值策略的计算","authors":"Maciej Augustyniak, A. Badescu","doi":"10.2139/ssrn.3475245","DOIUrl":null,"url":null,"abstract":"This paper discusses the computation of hedging strategies under affine Gaussian GARCH dynamics. The risk-minimization hedging strategy is derived in closed-form and related to minimum variance delta hedging. Several numerical experiments are conducted to investigate the accuracy and properties of the proposed hedging formula, as well as the convergence to its continuous-time counterpart based on the GARCH diffusion limit process. An empirical analysis with S&P 500 option data over 2001-2015 indicates that risk-minimization hedging with the affine Gaussian GARCH model outperforms benchmark delta hedges. Our study also reveals that the variance-dependent pricing kernel contributes to improving the hedging performance.","PeriodicalId":11410,"journal":{"name":"Econometric Modeling: Capital Markets - Risk eJournal","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the computation of hedging strategies in affine GARCH models\",\"authors\":\"Maciej Augustyniak, A. Badescu\",\"doi\":\"10.2139/ssrn.3475245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the computation of hedging strategies under affine Gaussian GARCH dynamics. The risk-minimization hedging strategy is derived in closed-form and related to minimum variance delta hedging. Several numerical experiments are conducted to investigate the accuracy and properties of the proposed hedging formula, as well as the convergence to its continuous-time counterpart based on the GARCH diffusion limit process. An empirical analysis with S&P 500 option data over 2001-2015 indicates that risk-minimization hedging with the affine Gaussian GARCH model outperforms benchmark delta hedges. Our study also reveals that the variance-dependent pricing kernel contributes to improving the hedging performance.\",\"PeriodicalId\":11410,\"journal\":{\"name\":\"Econometric Modeling: Capital Markets - Risk eJournal\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Modeling: Capital Markets - Risk eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3475245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Modeling: Capital Markets - Risk eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3475245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the computation of hedging strategies in affine GARCH models
This paper discusses the computation of hedging strategies under affine Gaussian GARCH dynamics. The risk-minimization hedging strategy is derived in closed-form and related to minimum variance delta hedging. Several numerical experiments are conducted to investigate the accuracy and properties of the proposed hedging formula, as well as the convergence to its continuous-time counterpart based on the GARCH diffusion limit process. An empirical analysis with S&P 500 option data over 2001-2015 indicates that risk-minimization hedging with the affine Gaussian GARCH model outperforms benchmark delta hedges. Our study also reveals that the variance-dependent pricing kernel contributes to improving the hedging performance.