天然气膜技术应用的经济框架

V. Martin-Gil, Mohd Zamidi Ahmad, Roberto Castro‐Muñoz, V. Fíla
{"title":"天然气膜技术应用的经济框架","authors":"V. Martin-Gil, Mohd Zamidi Ahmad, Roberto Castro‐Muñoz, V. Fíla","doi":"10.1080/15422119.2018.1532911","DOIUrl":null,"url":null,"abstract":"Natural gas is one of the most highly used resources, not only as a fuel but also as a raw material for many industrial processes. In addition, it is an environmental friendly fuel due to its lower greenhouse gas emission than that of coal or oil. However, it is a nonrenewable energy source and the quality of the available resources is expected to deplete continuously. In this scenario, membrane technologies can play an important role in the purification of the reduced and contaminated resources, competing with the current technologies owing to their simpler adaptability to different feed compositions, lower energy consumption and investment costs. In this review, the current state of the natural gas sources, including nonconventional resources (tight/shale gas and biogas), is explored, along with the current market status of the conventional natural gas. A comparison between the conventional purification technologies and membrane processes is provided, together with the currently available commercial membranes as well as new materials. Furthermore, the latest materials in research stage are reviewed, pointing out their limitations to the current membranes technologies. Finally, future research trends to overcome the current membrane technology limitations are proposed, and the conclusions are addressed.","PeriodicalId":21744,"journal":{"name":"Separation & Purification Reviews","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"53","resultStr":"{\"title\":\"Economic Framework of Membrane Technologies for Natural Gas Applications\",\"authors\":\"V. Martin-Gil, Mohd Zamidi Ahmad, Roberto Castro‐Muñoz, V. Fíla\",\"doi\":\"10.1080/15422119.2018.1532911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural gas is one of the most highly used resources, not only as a fuel but also as a raw material for many industrial processes. In addition, it is an environmental friendly fuel due to its lower greenhouse gas emission than that of coal or oil. However, it is a nonrenewable energy source and the quality of the available resources is expected to deplete continuously. In this scenario, membrane technologies can play an important role in the purification of the reduced and contaminated resources, competing with the current technologies owing to their simpler adaptability to different feed compositions, lower energy consumption and investment costs. In this review, the current state of the natural gas sources, including nonconventional resources (tight/shale gas and biogas), is explored, along with the current market status of the conventional natural gas. A comparison between the conventional purification technologies and membrane processes is provided, together with the currently available commercial membranes as well as new materials. Furthermore, the latest materials in research stage are reviewed, pointing out their limitations to the current membranes technologies. Finally, future research trends to overcome the current membrane technology limitations are proposed, and the conclusions are addressed.\",\"PeriodicalId\":21744,\"journal\":{\"name\":\"Separation & Purification Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Separation & Purification Reviews\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15422119.2018.1532911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation & Purification Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15422119.2018.1532911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 53

摘要

天然气是利用最广泛的资源之一,不仅作为燃料,而且作为许多工业过程的原料。此外,与煤炭或石油相比,它的温室气体排放量更低,是一种环境友好型燃料。然而,它是一种不可再生的能源,可用资源的质量预计会不断消耗。在这种情况下,膜技术可以在还原和污染资源的净化中发挥重要作用,与现有技术竞争,因为膜技术对不同饲料成分的适应性更简单,能耗和投资成本更低。本文综述了天然气资源的现状,包括非常规资源(致密气/页岩气和沼气),以及常规天然气的市场现状。比较了传统的净化技术和膜工艺,以及目前可用的商业膜和新材料。此外,对研究阶段的最新材料进行了综述,指出了它们对现有膜技术的局限性。最后,提出了克服当前膜技术局限性的未来研究趋势,并对结论进行了总结。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Economic Framework of Membrane Technologies for Natural Gas Applications
Natural gas is one of the most highly used resources, not only as a fuel but also as a raw material for many industrial processes. In addition, it is an environmental friendly fuel due to its lower greenhouse gas emission than that of coal or oil. However, it is a nonrenewable energy source and the quality of the available resources is expected to deplete continuously. In this scenario, membrane technologies can play an important role in the purification of the reduced and contaminated resources, competing with the current technologies owing to their simpler adaptability to different feed compositions, lower energy consumption and investment costs. In this review, the current state of the natural gas sources, including nonconventional resources (tight/shale gas and biogas), is explored, along with the current market status of the conventional natural gas. A comparison between the conventional purification technologies and membrane processes is provided, together with the currently available commercial membranes as well as new materials. Furthermore, the latest materials in research stage are reviewed, pointing out their limitations to the current membranes technologies. Finally, future research trends to overcome the current membrane technology limitations are proposed, and the conclusions are addressed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信