一般对称-强制无穷小刚性:平移和旋转

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
D. Bernstein
{"title":"一般对称-强制无穷小刚性:平移和旋转","authors":"D. Bernstein","doi":"10.1137/20m1346961","DOIUrl":null,"url":null,"abstract":"We characterize the combinatorial types of symmetric frameworks in the plane that are minimally generically symmetry-forced infinitesimally rigid when the underlying symmetry group consists of rotations and translations. Along the way, we use tropical geometry to show how a construction of Edmonds and Rota that associates a matroid to a submodular function can be used to give a description of the algebraic matroid underlying a Hadamard product of two linear spaces in terms of the matroids underlying each linear space. This leads to new, short, proofs of Laman's theorem, and a theorem of Jord{a}n, Kaszanitzky, and Tanigawa characterizing the minimally generically symmetry-forced rigid graphs in the plane when the symmetry group contains only rotations.","PeriodicalId":48489,"journal":{"name":"SIAM Journal on Applied Algebra and Geometry","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Generic Symmetry-Forced Infinitesimal Rigidity: Translations and Rotations\",\"authors\":\"D. Bernstein\",\"doi\":\"10.1137/20m1346961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We characterize the combinatorial types of symmetric frameworks in the plane that are minimally generically symmetry-forced infinitesimally rigid when the underlying symmetry group consists of rotations and translations. Along the way, we use tropical geometry to show how a construction of Edmonds and Rota that associates a matroid to a submodular function can be used to give a description of the algebraic matroid underlying a Hadamard product of two linear spaces in terms of the matroids underlying each linear space. This leads to new, short, proofs of Laman's theorem, and a theorem of Jord{a}n, Kaszanitzky, and Tanigawa characterizing the minimally generically symmetry-forced rigid graphs in the plane when the symmetry group contains only rotations.\",\"PeriodicalId\":48489,\"journal\":{\"name\":\"SIAM Journal on Applied Algebra and Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Algebra and Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/20m1346961\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Algebra and Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/20m1346961","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 5

摘要

我们描述了当底层对称群由旋转和平移组成时,平面上具有最小一般对称强制无穷小刚性的对称框架的组合类型。在此过程中,我们使用热带几何来展示Edmonds和Rota将矩阵与子模函数联系起来的构造如何用于描述两个线性空间的Hadamard积下的代数矩阵在每个线性空间下的矩阵。这导致了Laman定理的新的、简短的证明,以及Jord{a}n、Kaszanitzky和Tanigawa的一个定理,该定理描述了当对称群只包含旋转时平面上的最小一般对称强制刚性图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generic Symmetry-Forced Infinitesimal Rigidity: Translations and Rotations
We characterize the combinatorial types of symmetric frameworks in the plane that are minimally generically symmetry-forced infinitesimally rigid when the underlying symmetry group consists of rotations and translations. Along the way, we use tropical geometry to show how a construction of Edmonds and Rota that associates a matroid to a submodular function can be used to give a description of the algebraic matroid underlying a Hadamard product of two linear spaces in terms of the matroids underlying each linear space. This leads to new, short, proofs of Laman's theorem, and a theorem of Jord{a}n, Kaszanitzky, and Tanigawa characterizing the minimally generically symmetry-forced rigid graphs in the plane when the symmetry group contains only rotations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信