热激发共振膜质量流量传感器

Siebe Bouwstra, Paul Kemna, Rob Legtenberg
{"title":"热激发共振膜质量流量传感器","authors":"Siebe Bouwstra,&nbsp;Paul Kemna,&nbsp;Rob Legtenberg","doi":"10.1016/0250-6874(89)80119-2","DOIUrl":null,"url":null,"abstract":"<div><p>A mass flow sensor based on the frequency shift of a resonating microstructure is being developed, using a measurement principle of the thermoanemometry type. The sensor is to be applied for mass flows up to 10 standard cubic centimeters per minute (sccm; 10sccm = 0.17 mg s<sup>-1</sup>), with a high sensitivity, a high resolution and a fast response. Here we report on the first prototype consisting of a 2 μm thick membrane: the temperature elevation of the thermally excited vibrating membrane affects its resonance frequency. The three-dimemsional heat transfer within the membrane and the mass flow is modeled, and expressions are derived for the resonance frequencies of initially curved and stressed membranes. Experiments have been carried out for nitrogen flows of up to 500 sccm passing over thermally excited membranes. Predicted and measured values for the shift of the resonance frequency agree well. The sensitivity of the average temperature elevation to the mass flow is quite small: at 10 sccm the cooling effect of the mass flow is only 0.2% of the heat loss by conduction to the substrate. At a resonance frequency of 5.0 kHz, and an average temperature elevation of the mebrane of 8°C, this still leads to a frequency change of 13 Hz in the mass flow range from zero to 10 sccm. Suggestions are presented for increasing the sensitivity of the sensor.</p></div>","PeriodicalId":101159,"journal":{"name":"Sensors and Actuators","volume":"20 3","pages":"Pages 213-223"},"PeriodicalIF":0.0000,"publicationDate":"1989-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0250-6874(89)80119-2","citationCount":"40","resultStr":"{\"title\":\"Thermally Excited Resonating Membrane Mass Flow Sensor\",\"authors\":\"Siebe Bouwstra,&nbsp;Paul Kemna,&nbsp;Rob Legtenberg\",\"doi\":\"10.1016/0250-6874(89)80119-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A mass flow sensor based on the frequency shift of a resonating microstructure is being developed, using a measurement principle of the thermoanemometry type. The sensor is to be applied for mass flows up to 10 standard cubic centimeters per minute (sccm; 10sccm = 0.17 mg s<sup>-1</sup>), with a high sensitivity, a high resolution and a fast response. Here we report on the first prototype consisting of a 2 μm thick membrane: the temperature elevation of the thermally excited vibrating membrane affects its resonance frequency. The three-dimemsional heat transfer within the membrane and the mass flow is modeled, and expressions are derived for the resonance frequencies of initially curved and stressed membranes. Experiments have been carried out for nitrogen flows of up to 500 sccm passing over thermally excited membranes. Predicted and measured values for the shift of the resonance frequency agree well. The sensitivity of the average temperature elevation to the mass flow is quite small: at 10 sccm the cooling effect of the mass flow is only 0.2% of the heat loss by conduction to the substrate. At a resonance frequency of 5.0 kHz, and an average temperature elevation of the mebrane of 8°C, this still leads to a frequency change of 13 Hz in the mass flow range from zero to 10 sccm. Suggestions are presented for increasing the sensitivity of the sensor.</p></div>\",\"PeriodicalId\":101159,\"journal\":{\"name\":\"Sensors and Actuators\",\"volume\":\"20 3\",\"pages\":\"Pages 213-223\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0250-6874(89)80119-2\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0250687489801192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0250687489801192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

一种基于谐振微结构频移的质量流量传感器正在研制中,它采用的是热风速测量原理。该传感器适用于质量流量高达每分钟10标准立方厘米(sccm;10sccm = 0.17 mg s-1),灵敏度高,分辨率高,响应快。本文报道了由2 μm厚薄膜组成的第一个原型:热激振动膜的温度升高会影响其共振频率。建立了膜内的三维传热和质量流动模型,推导了初始弯曲膜和应力膜的共振频率表达式。实验已经进行了氮气流高达500 sccm通过热激膜。共振频率位移的预测值与实测值吻合较好。平均温度升高对质量流的敏感性相当小:在10 sccm时,质量流的冷却效果仅为传导到衬底的热损失的0.2%。在共振频率为5.0 kHz时,膜的平均温度升高为8°C,这仍然导致质量流量范围从0到10 sccm的频率变化为13 Hz。提出了提高传感器灵敏度的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermally Excited Resonating Membrane Mass Flow Sensor

A mass flow sensor based on the frequency shift of a resonating microstructure is being developed, using a measurement principle of the thermoanemometry type. The sensor is to be applied for mass flows up to 10 standard cubic centimeters per minute (sccm; 10sccm = 0.17 mg s-1), with a high sensitivity, a high resolution and a fast response. Here we report on the first prototype consisting of a 2 μm thick membrane: the temperature elevation of the thermally excited vibrating membrane affects its resonance frequency. The three-dimemsional heat transfer within the membrane and the mass flow is modeled, and expressions are derived for the resonance frequencies of initially curved and stressed membranes. Experiments have been carried out for nitrogen flows of up to 500 sccm passing over thermally excited membranes. Predicted and measured values for the shift of the resonance frequency agree well. The sensitivity of the average temperature elevation to the mass flow is quite small: at 10 sccm the cooling effect of the mass flow is only 0.2% of the heat loss by conduction to the substrate. At a resonance frequency of 5.0 kHz, and an average temperature elevation of the mebrane of 8°C, this still leads to a frequency change of 13 Hz in the mass flow range from zero to 10 sccm. Suggestions are presented for increasing the sensitivity of the sensor.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信