胺改性硅酸盐MCM-41吸附剂的制备及其去除H2S性能研究

IF 2.1 4区 化学 Q3 CHEMISTRY, PHYSICAL
J. Zhang, Hua Song, Yanguang Chen, Tianzhen Hao, Feng Li, Dan-dan Yuan, Xueqin Wang, Liang Zhao, Jinsen Gao
{"title":"胺改性硅酸盐MCM-41吸附剂的制备及其去除H2S性能研究","authors":"J. Zhang, Hua Song, Yanguang Chen, Tianzhen Hao, Feng Li, Dan-dan Yuan, Xueqin Wang, Liang Zhao, Jinsen Gao","doi":"10.1177/1468678319825900","DOIUrl":null,"url":null,"abstract":"A series of APTMS ((3-aminopropyl)trimethoxysilane)-modified silicate MCM-41 adsorbents (x-APTMS/MCM-41, x is the volume of APTMS per 1 g of silicate MCM-41) with different APTMS contents was prepared, and the effects of APTMS content on the desulfurization performance of the APTMS/MCM-41 adsorbents were studied in a fixed adsorption bed using H2S and N2 mixture as a model gas. The as-prepared adsorbents were characterized by X-ray diffraction analysis, N2 adsorption–desorption, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, and energy-dispersive spectroscopy. The results showed that all the APTMS-modified x-APTMS/MCM-41 adsorbents retained the mesoporous silica structure of MCM-41. The Brunauer–Emmett–Teller-specific surface area of x-APTMS/MCM-41 increased slightly with increasing x at first and then decreased with further increasing APTMS content. The H2S removal performances of x-APTMS/MCM-41 adsorbents decreased in the order 0.6-APTMS/MCM-41 > 0.7-APTMS/MCM-41 > 0.5-APTMS/MCM-41 > 0.4-APTMS/MCM-41 > 0.8-APTMS/MCM-41. At x = 0.6, the maximum H2S removal rate of 54.2% and H2S saturated capacity of 134.4 mg g−1 were observed. The regeneration experiment of 0.6-APTMS/MCM-41 adsorbent after three times regeneration at 423 K for 3 h in nitrogen confirmed that it possessed a good regenerability.","PeriodicalId":20859,"journal":{"name":"Progress in Reaction Kinetics and Mechanism","volume":"4 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Study on the preparation of amine-modified silicate MCM-41 adsorbent and its H2S removal performance\",\"authors\":\"J. Zhang, Hua Song, Yanguang Chen, Tianzhen Hao, Feng Li, Dan-dan Yuan, Xueqin Wang, Liang Zhao, Jinsen Gao\",\"doi\":\"10.1177/1468678319825900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A series of APTMS ((3-aminopropyl)trimethoxysilane)-modified silicate MCM-41 adsorbents (x-APTMS/MCM-41, x is the volume of APTMS per 1 g of silicate MCM-41) with different APTMS contents was prepared, and the effects of APTMS content on the desulfurization performance of the APTMS/MCM-41 adsorbents were studied in a fixed adsorption bed using H2S and N2 mixture as a model gas. The as-prepared adsorbents were characterized by X-ray diffraction analysis, N2 adsorption–desorption, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, and energy-dispersive spectroscopy. The results showed that all the APTMS-modified x-APTMS/MCM-41 adsorbents retained the mesoporous silica structure of MCM-41. The Brunauer–Emmett–Teller-specific surface area of x-APTMS/MCM-41 increased slightly with increasing x at first and then decreased with further increasing APTMS content. The H2S removal performances of x-APTMS/MCM-41 adsorbents decreased in the order 0.6-APTMS/MCM-41 > 0.7-APTMS/MCM-41 > 0.5-APTMS/MCM-41 > 0.4-APTMS/MCM-41 > 0.8-APTMS/MCM-41. At x = 0.6, the maximum H2S removal rate of 54.2% and H2S saturated capacity of 134.4 mg g−1 were observed. The regeneration experiment of 0.6-APTMS/MCM-41 adsorbent after three times regeneration at 423 K for 3 h in nitrogen confirmed that it possessed a good regenerability.\",\"PeriodicalId\":20859,\"journal\":{\"name\":\"Progress in Reaction Kinetics and Mechanism\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Reaction Kinetics and Mechanism\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1177/1468678319825900\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Reaction Kinetics and Mechanism","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/1468678319825900","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 3

摘要

制备了一系列不同APTMS含量的APTMS((3-氨基丙基)三甲氧基硅烷)改性硅酸盐MCM-41吸附剂(x-APTMS/MCM-41, x为每g硅酸盐MCM-41中APTMS的体积),并在固定吸附床上以H2S和N2混合气为模型气,研究了APTMS含量对APTMS/MCM-41吸附剂脱硫性能的影响。采用x射线衍射分析、N2吸附-解吸、傅里叶红外光谱、透射电镜、扫描电镜和能量色散光谱对所制备的吸附剂进行了表征。结果表明,所有aptms修饰的x-APTMS/MCM-41吸附剂都保留了MCM-41的介孔二氧化硅结构。x-APTMS/MCM-41的brunauer - emmet - teller比表面积先随x的增加略有增加,后随APTMS含量的进一步增加而减小。x-APTMS/MCM-41吸附剂对H2S的去除效果依次为:0.6-APTMS/MCM-41 > 0.7-APTMS/MCM-41 > 0.5-APTMS/MCM-41 > 0.4-APTMS/MCM-41 > 0.8-APTMS/MCM-41。在x = 0.6时,H2S去除率最高可达54.2%,H2S饱和容量为134.4 mg g−1。对0.6-APTMS/MCM-41吸附剂在423 K条件下进行3次氮气再生实验,证实其具有良好的可再生性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the preparation of amine-modified silicate MCM-41 adsorbent and its H2S removal performance
A series of APTMS ((3-aminopropyl)trimethoxysilane)-modified silicate MCM-41 adsorbents (x-APTMS/MCM-41, x is the volume of APTMS per 1 g of silicate MCM-41) with different APTMS contents was prepared, and the effects of APTMS content on the desulfurization performance of the APTMS/MCM-41 adsorbents were studied in a fixed adsorption bed using H2S and N2 mixture as a model gas. The as-prepared adsorbents were characterized by X-ray diffraction analysis, N2 adsorption–desorption, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, and energy-dispersive spectroscopy. The results showed that all the APTMS-modified x-APTMS/MCM-41 adsorbents retained the mesoporous silica structure of MCM-41. The Brunauer–Emmett–Teller-specific surface area of x-APTMS/MCM-41 increased slightly with increasing x at first and then decreased with further increasing APTMS content. The H2S removal performances of x-APTMS/MCM-41 adsorbents decreased in the order 0.6-APTMS/MCM-41 > 0.7-APTMS/MCM-41 > 0.5-APTMS/MCM-41 > 0.4-APTMS/MCM-41 > 0.8-APTMS/MCM-41. At x = 0.6, the maximum H2S removal rate of 54.2% and H2S saturated capacity of 134.4 mg g−1 were observed. The regeneration experiment of 0.6-APTMS/MCM-41 adsorbent after three times regeneration at 423 K for 3 h in nitrogen confirmed that it possessed a good regenerability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
5
审稿时长
2.3 months
期刊介绍: The journal covers the fields of kinetics and mechanisms of chemical processes in the gas phase and solution of both simple and complex systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信