{"title":"在Busemann凸度量空间中,通过MNC得到最佳接近点(对)","authors":"M. Gabeleh, P. Patle","doi":"10.4995/agt.2022.14000","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new class of cyclic (noncyclic) α-ψ and β-ψ condensing operators and survey the existence of best proximity points (pairs) as well as coupled best proximity points (pairs) in the setting of reflexive Busemann convex spaces. Then an application of the main existence result to study the existence of an optimal solution for a system of differential equations is demonstrated.","PeriodicalId":8046,"journal":{"name":"Applied general topology","volume":"43 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Best proximity point (pair) results via MNC in Busemann convex metric spaces\",\"authors\":\"M. Gabeleh, P. Patle\",\"doi\":\"10.4995/agt.2022.14000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new class of cyclic (noncyclic) α-ψ and β-ψ condensing operators and survey the existence of best proximity points (pairs) as well as coupled best proximity points (pairs) in the setting of reflexive Busemann convex spaces. Then an application of the main existence result to study the existence of an optimal solution for a system of differential equations is demonstrated.\",\"PeriodicalId\":8046,\"journal\":{\"name\":\"Applied general topology\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied general topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4995/agt.2022.14000\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied general topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/agt.2022.14000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Best proximity point (pair) results via MNC in Busemann convex metric spaces
In this paper, we present a new class of cyclic (noncyclic) α-ψ and β-ψ condensing operators and survey the existence of best proximity points (pairs) as well as coupled best proximity points (pairs) in the setting of reflexive Busemann convex spaces. Then an application of the main existence result to study the existence of an optimal solution for a system of differential equations is demonstrated.
期刊介绍:
The international journal Applied General Topology publishes only original research papers related to the interactions between General Topology and other mathematical disciplines as well as topological results with applications to other areas of Science, and the development of topological theories of sufficiently general relevance to allow for future applications. Submissions are strictly refereed. Contributions, which should be in English, can be sent either to the appropriate member of the Editorial Board or to one of the Editors-in-Chief. All papers are reviewed in Mathematical Reviews and Zentralblatt für Mathematik.