[硫化氢供体NaHs对大鼠心脏线粒体呼吸链功能状态的影响]。

O. M. Semenykhina, N. A. Strutyns'ka, A. I. Bud'ko, H. L. Vavilova, V. F. Sahach
{"title":"[硫化氢供体NaHs对大鼠心脏线粒体呼吸链功能状态的影响]。","authors":"O. M. Semenykhina, N. A. Strutyns'ka, A. I. Bud'ko, H. L. Vavilova, V. F. Sahach","doi":"10.15407/FZ59.02.009","DOIUrl":null,"url":null,"abstract":"In experiments on mitochondria isolated from the heart tissue of adult rats we studied the effects of a donor of hydrogen sulfide, NaHS, on the respiratory chain of the organelles. We found that NaHS (10(-9)-10(-6) mol/l) caused a dose-dependent decrease in the rate of oxygen consumption in the presence of succinate and ADP (state 3 to Chance), and in the absence of ADP (state 4). The decrease in the rate of oxygen consumption in a concentration NaHS 10(-9) mol/l and 10(-8) mol/l associated with an increased conjugation of oxidation and phosphorylation, as evidenced by the increase in the respiratory control, the efficiency of oxidative phosphorylation (ADP/O) is not changed. Our studies suggest a protective effect of hydrogen sulfide donor on the functional state of the mitochondria. To elucidate of other the mechanisms of the protective action H2S we also investigated the effect of hydrogen sulfide donor on the mitochondrial swelling. It was found that NaHS in the range of concentration 10(-12) - 10(-4) mol/l influences the level of mitochondria swelling of the rats heart in the dose-dependent manner. It was also shown that when the concentration of Ca2+ 1 nmol/mg protein in the medium, under the action of hydrogen sulfide in the donor concentration range 10(-12) - 10(-8) mol/l, there was a moderate swelling of rats heart mitochondria. Under the action of NaHS at a concentration of 10(-9) mol/l it was observed swelling of the mitochondria, the maximum change in the level of which was 11%. Inhibitor of mitochondrial ATP-sensitive K+ channels (K(ATP) channels) 5-hydroxydecanoate (10(-4) mol/l) partially reduced the mitochondrial swelling in the presence of NaHS (10(-9) mol/l), which may indicate the activation of K(ATP) channels. Our studies point for possible involvement of mitochondrial K(ATP) channels in implementation of the mechanisms of H2S.","PeriodicalId":12306,"journal":{"name":"Fiziolohichnyi zhurnal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"[Effect of hydrogen sulfide donor NaHs on the functional state of the respiratory chain of the rat heart mitochondria].\",\"authors\":\"O. M. Semenykhina, N. A. Strutyns'ka, A. I. Bud'ko, H. L. Vavilova, V. F. Sahach\",\"doi\":\"10.15407/FZ59.02.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In experiments on mitochondria isolated from the heart tissue of adult rats we studied the effects of a donor of hydrogen sulfide, NaHS, on the respiratory chain of the organelles. We found that NaHS (10(-9)-10(-6) mol/l) caused a dose-dependent decrease in the rate of oxygen consumption in the presence of succinate and ADP (state 3 to Chance), and in the absence of ADP (state 4). The decrease in the rate of oxygen consumption in a concentration NaHS 10(-9) mol/l and 10(-8) mol/l associated with an increased conjugation of oxidation and phosphorylation, as evidenced by the increase in the respiratory control, the efficiency of oxidative phosphorylation (ADP/O) is not changed. Our studies suggest a protective effect of hydrogen sulfide donor on the functional state of the mitochondria. To elucidate of other the mechanisms of the protective action H2S we also investigated the effect of hydrogen sulfide donor on the mitochondrial swelling. It was found that NaHS in the range of concentration 10(-12) - 10(-4) mol/l influences the level of mitochondria swelling of the rats heart in the dose-dependent manner. It was also shown that when the concentration of Ca2+ 1 nmol/mg protein in the medium, under the action of hydrogen sulfide in the donor concentration range 10(-12) - 10(-8) mol/l, there was a moderate swelling of rats heart mitochondria. Under the action of NaHS at a concentration of 10(-9) mol/l it was observed swelling of the mitochondria, the maximum change in the level of which was 11%. Inhibitor of mitochondrial ATP-sensitive K+ channels (K(ATP) channels) 5-hydroxydecanoate (10(-4) mol/l) partially reduced the mitochondrial swelling in the presence of NaHS (10(-9) mol/l), which may indicate the activation of K(ATP) channels. Our studies point for possible involvement of mitochondrial K(ATP) channels in implementation of the mechanisms of H2S.\",\"PeriodicalId\":12306,\"journal\":{\"name\":\"Fiziolohichnyi zhurnal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fiziolohichnyi zhurnal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/FZ59.02.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fiziolohichnyi zhurnal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/FZ59.02.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在从成年大鼠心脏组织中分离的线粒体实验中,我们研究了硫化氢NaHS供体对细胞器呼吸链的影响。我们发现NaHS (10(-9)-10(-6) mol/l)在琥珀酸盐和ADP存在时(状态3 - Chance)和ADP不存在时(状态4)引起了氧消耗速率的剂量依赖性降低。NaHS浓度为10(-9)mol/l和10(-8)mol/l时氧消耗速率的降低与氧化和磷酸化结合的增加有关,呼吸控制的增加证明了这一点。氧化磷酸化效率(ADP/O)不变。我们的研究表明,硫化氢供体对线粒体的功能状态有保护作用。为了阐明H2S保护作用的其他机制,我们还研究了硫化氢供体对线粒体肿胀的影响。结果表明,NaHS在10(-12)~ 10(-4)mol/l浓度范围内对大鼠心脏线粒体肿胀水平的影响呈剂量依赖性。结果还表明,当Ca2+ 1 nmol/mg蛋白浓度为培养基时,在供体硫化氢浓度范围为10(-12)~ 10(-8)mol/l的硫化氢作用下,大鼠心脏线粒体出现中度肿胀。在NaHS浓度为10(-9)mol/l的作用下,线粒体肿胀,最大变化幅度为11%。线粒体ATP敏感K+通道(K(ATP)通道)抑制剂5-羟乙酸酯(10(-4)mol/l)在NaHS (10(-9) mol/l)存在下部分降低了线粒体肿胀,这可能表明K(ATP)通道被激活。我们的研究指出,线粒体K(ATP)通道可能参与H2S的实现机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[Effect of hydrogen sulfide donor NaHs on the functional state of the respiratory chain of the rat heart mitochondria].
In experiments on mitochondria isolated from the heart tissue of adult rats we studied the effects of a donor of hydrogen sulfide, NaHS, on the respiratory chain of the organelles. We found that NaHS (10(-9)-10(-6) mol/l) caused a dose-dependent decrease in the rate of oxygen consumption in the presence of succinate and ADP (state 3 to Chance), and in the absence of ADP (state 4). The decrease in the rate of oxygen consumption in a concentration NaHS 10(-9) mol/l and 10(-8) mol/l associated with an increased conjugation of oxidation and phosphorylation, as evidenced by the increase in the respiratory control, the efficiency of oxidative phosphorylation (ADP/O) is not changed. Our studies suggest a protective effect of hydrogen sulfide donor on the functional state of the mitochondria. To elucidate of other the mechanisms of the protective action H2S we also investigated the effect of hydrogen sulfide donor on the mitochondrial swelling. It was found that NaHS in the range of concentration 10(-12) - 10(-4) mol/l influences the level of mitochondria swelling of the rats heart in the dose-dependent manner. It was also shown that when the concentration of Ca2+ 1 nmol/mg protein in the medium, under the action of hydrogen sulfide in the donor concentration range 10(-12) - 10(-8) mol/l, there was a moderate swelling of rats heart mitochondria. Under the action of NaHS at a concentration of 10(-9) mol/l it was observed swelling of the mitochondria, the maximum change in the level of which was 11%. Inhibitor of mitochondrial ATP-sensitive K+ channels (K(ATP) channels) 5-hydroxydecanoate (10(-4) mol/l) partially reduced the mitochondrial swelling in the presence of NaHS (10(-9) mol/l), which may indicate the activation of K(ATP) channels. Our studies point for possible involvement of mitochondrial K(ATP) channels in implementation of the mechanisms of H2S.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信