使用Bernstein多项式的可达集计算的Python实现

The Archivist Pub Date : 2020-01-01 DOI:10.29007/rs5n
Edward D. Kim, Parasara Sridhar Duggirala
{"title":"使用Bernstein多项式的可达集计算的Python实现","authors":"Edward D. Kim, Parasara Sridhar Duggirala","doi":"10.29007/rs5n","DOIUrl":null,"url":null,"abstract":"Reachable set computation is one of the many widely-used techniques for the verification of safety properties of dynamical systems. One of the simplest algorithms for computing reachable sets for discrete nonlinear systems uses parallelotope bundles and Bernstein polynomials. In this paper, we describe Kaa, a terse Python implementation of reachable set computation which leverages the widely used symbolic package sympy. Additionally, we simplify the user interface and provide easy-to-use plotting utilities. We believe that our tool has pedagogical value given the simplicity of the implementation and its userfriendliness.","PeriodicalId":82938,"journal":{"name":"The Archivist","volume":"25 1","pages":"184-196"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Kaa: A Python Implementation of Reachable Set Computation Using Bernstein Polynomials\",\"authors\":\"Edward D. Kim, Parasara Sridhar Duggirala\",\"doi\":\"10.29007/rs5n\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reachable set computation is one of the many widely-used techniques for the verification of safety properties of dynamical systems. One of the simplest algorithms for computing reachable sets for discrete nonlinear systems uses parallelotope bundles and Bernstein polynomials. In this paper, we describe Kaa, a terse Python implementation of reachable set computation which leverages the widely used symbolic package sympy. Additionally, we simplify the user interface and provide easy-to-use plotting utilities. We believe that our tool has pedagogical value given the simplicity of the implementation and its userfriendliness.\",\"PeriodicalId\":82938,\"journal\":{\"name\":\"The Archivist\",\"volume\":\"25 1\",\"pages\":\"184-196\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Archivist\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29007/rs5n\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Archivist","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29007/rs5n","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

可达集计算是验证动力系统安全特性的众多常用技术之一。计算离散非线性系统可达集的最简单算法之一是使用平行四边形束和伯恩斯坦多项式。在本文中,我们描述了Kaa,一个可达集计算的简洁Python实现,它利用了广泛使用的符号包sympy。此外,我们简化了用户界面并提供易于使用的绘图工具。考虑到实现的简单性和用户友好性,我们相信我们的工具具有教学价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kaa: A Python Implementation of Reachable Set Computation Using Bernstein Polynomials
Reachable set computation is one of the many widely-used techniques for the verification of safety properties of dynamical systems. One of the simplest algorithms for computing reachable sets for discrete nonlinear systems uses parallelotope bundles and Bernstein polynomials. In this paper, we describe Kaa, a terse Python implementation of reachable set computation which leverages the widely used symbolic package sympy. Additionally, we simplify the user interface and provide easy-to-use plotting utilities. We believe that our tool has pedagogical value given the simplicity of the implementation and its userfriendliness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信