基于初始四叉树的航次动态规划优化

IF 4.8 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Gwang-Hyeok Choi, Wonhee Lee, Tae-wan Kim
{"title":"基于初始四叉树的航次动态规划优化","authors":"Gwang-Hyeok Choi, Wonhee Lee, Tae-wan Kim","doi":"10.1093/jcde/qwad055","DOIUrl":null,"url":null,"abstract":"\n This research proposes an integrated voyage optimization algorithm that combines quadtree graph generation, visibility graph simplification, Dijkstra’s algorithm, and a 3D dynamic programming (3DDP) method. This approach enables the determination of a minimum distance initial reference route and the creation of a 2D navigational graph for efficient route optimization. We effectively store and process complex terrain information by transforming the GEBCO uniform grid into a quadtree structure. By utilizing a nearest neighbour search algorithm, edges are connected between adjacent ocean nodes, facilitating the generation of a quadtree graph. Applying Dijkstra’s algorithm to the quadtree graph, we derive the shortest initial route and construct a visibility graph based on the waypoints. This results in a simplified reference route with reduced search distance, allowing for more efficient navigation. For each waypoint along the reference route, a boundary is defined angled at 90 degrees to the left and right, based on the waypoint’s reference bearing. A line segment formed by the waypoint and both boundaries is defined as a navigational stage. A navigational graph is defined by connecting adjacent stages. Employing a 3DDP method on the navigational graph, and incorporating weather forecasting data, including wind, wave, and currents, we search for a route that minimizes fuel oil consumption with estimated time of arrival restrictions. Our approach is tested on several shipping routes, demonstrating a fuel consumption reduction compared to other voyage optimization routes. This integrated algorithm offers a potential solution for tackling complex voyage optimization problems in marine environments while considering various weather factors.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":"39 1","pages":"1185-1203"},"PeriodicalIF":4.8000,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Voyage optimization using dynamic programming with initial quadtree based route\",\"authors\":\"Gwang-Hyeok Choi, Wonhee Lee, Tae-wan Kim\",\"doi\":\"10.1093/jcde/qwad055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This research proposes an integrated voyage optimization algorithm that combines quadtree graph generation, visibility graph simplification, Dijkstra’s algorithm, and a 3D dynamic programming (3DDP) method. This approach enables the determination of a minimum distance initial reference route and the creation of a 2D navigational graph for efficient route optimization. We effectively store and process complex terrain information by transforming the GEBCO uniform grid into a quadtree structure. By utilizing a nearest neighbour search algorithm, edges are connected between adjacent ocean nodes, facilitating the generation of a quadtree graph. Applying Dijkstra’s algorithm to the quadtree graph, we derive the shortest initial route and construct a visibility graph based on the waypoints. This results in a simplified reference route with reduced search distance, allowing for more efficient navigation. For each waypoint along the reference route, a boundary is defined angled at 90 degrees to the left and right, based on the waypoint’s reference bearing. A line segment formed by the waypoint and both boundaries is defined as a navigational stage. A navigational graph is defined by connecting adjacent stages. Employing a 3DDP method on the navigational graph, and incorporating weather forecasting data, including wind, wave, and currents, we search for a route that minimizes fuel oil consumption with estimated time of arrival restrictions. Our approach is tested on several shipping routes, demonstrating a fuel consumption reduction compared to other voyage optimization routes. This integrated algorithm offers a potential solution for tackling complex voyage optimization problems in marine environments while considering various weather factors.\",\"PeriodicalId\":48611,\"journal\":{\"name\":\"Journal of Computational Design and Engineering\",\"volume\":\"39 1\",\"pages\":\"1185-1203\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Design and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jcde/qwad055\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Design and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jcde/qwad055","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种结合四叉树图生成、可见度图简化、Dijkstra算法和三维动态规划(3DDP)方法的综合航次优化算法。该方法能够确定最小距离初始参考路线并创建2D导航图,从而实现有效的路线优化。将GEBCO统一网格转化为四叉树结构,有效地存储和处理复杂地形信息。通过利用最近邻搜索算法,在相邻的海洋节点之间连接边,方便了四叉树图的生成。将Dijkstra算法应用于四叉树图,得到最短的初始路径,并基于路径点构造可见性图。这样可以简化参考路线,减少搜索距离,从而实现更高效的导航。对于参考路线上的每个航路点,根据航路点的参考方位,以左右90度的角度定义一个边界。由航路点和两个边界组成的线段定义为一个导航阶段。通过连接相邻的阶段来定义导航图。在导航图上使用3DDP方法,并结合天气预报数据,包括风、浪和洋流,我们寻找一条在预计到达时间限制下最大限度减少燃油消耗的路线。我们的方法在几条航线上进行了测试,与其他航次优化路线相比,证明了燃料消耗的降低。该综合算法为综合考虑各种天气因素的海洋环境下复杂航次优化问题提供了一种潜在的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Voyage optimization using dynamic programming with initial quadtree based route
This research proposes an integrated voyage optimization algorithm that combines quadtree graph generation, visibility graph simplification, Dijkstra’s algorithm, and a 3D dynamic programming (3DDP) method. This approach enables the determination of a minimum distance initial reference route and the creation of a 2D navigational graph for efficient route optimization. We effectively store and process complex terrain information by transforming the GEBCO uniform grid into a quadtree structure. By utilizing a nearest neighbour search algorithm, edges are connected between adjacent ocean nodes, facilitating the generation of a quadtree graph. Applying Dijkstra’s algorithm to the quadtree graph, we derive the shortest initial route and construct a visibility graph based on the waypoints. This results in a simplified reference route with reduced search distance, allowing for more efficient navigation. For each waypoint along the reference route, a boundary is defined angled at 90 degrees to the left and right, based on the waypoint’s reference bearing. A line segment formed by the waypoint and both boundaries is defined as a navigational stage. A navigational graph is defined by connecting adjacent stages. Employing a 3DDP method on the navigational graph, and incorporating weather forecasting data, including wind, wave, and currents, we search for a route that minimizes fuel oil consumption with estimated time of arrival restrictions. Our approach is tested on several shipping routes, demonstrating a fuel consumption reduction compared to other voyage optimization routes. This integrated algorithm offers a potential solution for tackling complex voyage optimization problems in marine environments while considering various weather factors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Design and Engineering
Journal of Computational Design and Engineering Computer Science-Human-Computer Interaction
CiteScore
7.70
自引率
20.40%
发文量
125
期刊介绍: Journal of Computational Design and Engineering is an international journal that aims to provide academia and industry with a venue for rapid publication of research papers reporting innovative computational methods and applications to achieve a major breakthrough, practical improvements, and bold new research directions within a wide range of design and engineering: • Theory and its progress in computational advancement for design and engineering • Development of computational framework to support large scale design and engineering • Interaction issues among human, designed artifacts, and systems • Knowledge-intensive technologies for intelligent and sustainable systems • Emerging technology and convergence of technology fields presented with convincing design examples • Educational issues for academia, practitioners, and future generation • Proposal on new research directions as well as survey and retrospectives on mature field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信