领导:Mri重建的可学习深径向亚采样

Zhiwen Wang, Bowen Li, Wenjun Xia, Chenyu Shen, Mingzheng Hou, Hu Chen, Y. Liu, Jiliu Zhou, Yi Zhang
{"title":"领导:Mri重建的可学习深径向亚采样","authors":"Zhiwen Wang, Bowen Li, Wenjun Xia, Chenyu Shen, Mingzheng Hou, Hu Chen, Y. Liu, Jiliu Zhou, Yi Zhang","doi":"10.1109/ISBI52829.2022.9761544","DOIUrl":null,"url":null,"abstract":"Recently, deep learning approaches have shown great promise in learning MRI subsampling. The majority of existing works have focused on optimizing Cartesian or equipment-constrained Gaussian-like subsampling, ignoring the question of learning radial subsampling. This paper proposes a simple learnable radial subsampling technique for compressed sensing MRI. The proposed approach exploits a radial subsampling for direct estimation of all radial spokes’ weights from radial sampling space. The proposed Learnable Deep Radial Subsampling (LEADERS) method can be easily integrated with any deep learning-based reconstruction algorithm. This method can provide reliable estimates in a deep learning manner. The effectiveness of the generated radial subsampling patterns is verified on two deep learning-based reconstruction models, with a large-scale, publicly available brain MRI datasets for two downsampling factors (R = 4 and 8). The numerical and visual experiments demonstrate that the learned radial subsampling patterns can be applied for different deep learning reconstruction models with different subsampling rates, and shows more efficient and effective results than the ones reconstructed using existing handcrafted radial subsampling patterns.","PeriodicalId":6827,"journal":{"name":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","volume":"5 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Leaders: Learnable Deep Radial Subsampling for Mri Reconstruction\",\"authors\":\"Zhiwen Wang, Bowen Li, Wenjun Xia, Chenyu Shen, Mingzheng Hou, Hu Chen, Y. Liu, Jiliu Zhou, Yi Zhang\",\"doi\":\"10.1109/ISBI52829.2022.9761544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, deep learning approaches have shown great promise in learning MRI subsampling. The majority of existing works have focused on optimizing Cartesian or equipment-constrained Gaussian-like subsampling, ignoring the question of learning radial subsampling. This paper proposes a simple learnable radial subsampling technique for compressed sensing MRI. The proposed approach exploits a radial subsampling for direct estimation of all radial spokes’ weights from radial sampling space. The proposed Learnable Deep Radial Subsampling (LEADERS) method can be easily integrated with any deep learning-based reconstruction algorithm. This method can provide reliable estimates in a deep learning manner. The effectiveness of the generated radial subsampling patterns is verified on two deep learning-based reconstruction models, with a large-scale, publicly available brain MRI datasets for two downsampling factors (R = 4 and 8). The numerical and visual experiments demonstrate that the learned radial subsampling patterns can be applied for different deep learning reconstruction models with different subsampling rates, and shows more efficient and effective results than the ones reconstructed using existing handcrafted radial subsampling patterns.\",\"PeriodicalId\":6827,\"journal\":{\"name\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"volume\":\"5 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI52829.2022.9761544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI52829.2022.9761544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

最近,深度学习方法在学习MRI子采样方面显示出很大的前景。现有的大部分工作都集中在优化笛卡尔或设备受限的类高斯子采样上,而忽略了学习径向子采样的问题。提出了一种用于压缩感知MRI的简单可学习径向子采样技术。该方法利用径向子抽样从径向抽样空间直接估计所有径向辐条的权重。提出的可学习深度径向子采样(LEADERS)方法可以很容易地与任何基于深度学习的重建算法集成。该方法能够以深度学习的方式提供可靠的估计。在两种基于深度学习的重建模型上验证了所生成的径向子采样模式的有效性,采用大规模的、公开的脑MRI数据集进行两个下采样因子(R = 4和8)。数值和视觉实验表明,所学习的径向子采样模式可以应用于不同的深度学习重建模型,具有不同的子采样率。结果表明,与现有手工制作的径向子采样模式相比,重构结果更加高效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leaders: Learnable Deep Radial Subsampling for Mri Reconstruction
Recently, deep learning approaches have shown great promise in learning MRI subsampling. The majority of existing works have focused on optimizing Cartesian or equipment-constrained Gaussian-like subsampling, ignoring the question of learning radial subsampling. This paper proposes a simple learnable radial subsampling technique for compressed sensing MRI. The proposed approach exploits a radial subsampling for direct estimation of all radial spokes’ weights from radial sampling space. The proposed Learnable Deep Radial Subsampling (LEADERS) method can be easily integrated with any deep learning-based reconstruction algorithm. This method can provide reliable estimates in a deep learning manner. The effectiveness of the generated radial subsampling patterns is verified on two deep learning-based reconstruction models, with a large-scale, publicly available brain MRI datasets for two downsampling factors (R = 4 and 8). The numerical and visual experiments demonstrate that the learned radial subsampling patterns can be applied for different deep learning reconstruction models with different subsampling rates, and shows more efficient and effective results than the ones reconstructed using existing handcrafted radial subsampling patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信