4 .总统治游戏关键图表

IF 0.6 Q4 MATHEMATICS, APPLIED
Chalermpong Worawannotai, Karnchana Charoensitthichai
{"title":"4 .总统治游戏关键图表","authors":"Chalermpong Worawannotai, Karnchana Charoensitthichai","doi":"10.1142/s1793830923500611","DOIUrl":null,"url":null,"abstract":"The total domination game is played on a simple graph [Formula: see text] with no isolated vertices by two players, Dominator and Staller, who alternate choosing a vertex in [Formula: see text]. Each chosen vertex totally dominates its neighbors. In this game, each chosen vertex must totally dominates at least one new vertex not totally dominated before. The game ends when all vertices in [Formula: see text] are totally dominated. Dominator’s goal is to finish the game as soon as possible, and Staller’s goal is to prolong it as much as possible. The game total domination number is the number of chosen vertices when both players play optimally, denoted by [Formula: see text] when Dominator starts the game and denoted by [Formula: see text] when Staller starts the game. If a vertex [Formula: see text] in [Formula: see text] is declared to be already totally dominated, then we denote this graph by [Formula: see text]. A total domination game critical graph is a graph [Formula: see text] for which [Formula: see text] holds for every vertex [Formula: see text] in [Formula: see text]. If [Formula: see text], then [Formula: see text] is called [Formula: see text]-[Formula: see text]-critical. In this work, we characterize some 4-[Formula: see text]-critical graphs.","PeriodicalId":45568,"journal":{"name":"Discrete Mathematics Algorithms and Applications","volume":"33 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"4-Total domination game critical graphs\",\"authors\":\"Chalermpong Worawannotai, Karnchana Charoensitthichai\",\"doi\":\"10.1142/s1793830923500611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The total domination game is played on a simple graph [Formula: see text] with no isolated vertices by two players, Dominator and Staller, who alternate choosing a vertex in [Formula: see text]. Each chosen vertex totally dominates its neighbors. In this game, each chosen vertex must totally dominates at least one new vertex not totally dominated before. The game ends when all vertices in [Formula: see text] are totally dominated. Dominator’s goal is to finish the game as soon as possible, and Staller’s goal is to prolong it as much as possible. The game total domination number is the number of chosen vertices when both players play optimally, denoted by [Formula: see text] when Dominator starts the game and denoted by [Formula: see text] when Staller starts the game. If a vertex [Formula: see text] in [Formula: see text] is declared to be already totally dominated, then we denote this graph by [Formula: see text]. A total domination game critical graph is a graph [Formula: see text] for which [Formula: see text] holds for every vertex [Formula: see text] in [Formula: see text]. If [Formula: see text], then [Formula: see text] is called [Formula: see text]-[Formula: see text]-critical. In this work, we characterize some 4-[Formula: see text]-critical graphs.\",\"PeriodicalId\":45568,\"journal\":{\"name\":\"Discrete Mathematics Algorithms and Applications\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics Algorithms and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s1793830923500611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s1793830923500611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

完全统治游戏是在一个简单的图形上进行的,两个玩家,Dominator和Staller,没有孤立的顶点,他们轮流选择[公式:见文本]中的顶点。每个被选择的顶点完全支配它的邻居。在这个游戏中,每个选择的顶点必须完全控制至少一个之前没有完全控制的新顶点。当[公式:见文本]中的所有顶点都被完全控制时,游戏就结束了。Dominator的目标是尽快完成游戏,而Staller的目标是尽可能延长游戏时间。游戏总支配数是当两个玩家都处于最佳状态时所选择的顶点数,当Dominator开始游戏时用[公式:见文本]表示,当Staller开始游戏时用[公式:见文本]表示。如果在[公式:见文]中一个顶点[公式:见文]被声明为已经完全被支配,那么我们用[公式:见文]表示这个图。完全控制游戏关键图是指[公式:见文]中每个顶点(公式:见文)都成立的图[公式:见文]。如果[公式:见正文],那么[公式:见正文]就被称为[公式:见正文]-[公式:见正文]-关键。在这项工作中,我们描述了一些4-[公式:见文本]临界图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
4-Total domination game critical graphs
The total domination game is played on a simple graph [Formula: see text] with no isolated vertices by two players, Dominator and Staller, who alternate choosing a vertex in [Formula: see text]. Each chosen vertex totally dominates its neighbors. In this game, each chosen vertex must totally dominates at least one new vertex not totally dominated before. The game ends when all vertices in [Formula: see text] are totally dominated. Dominator’s goal is to finish the game as soon as possible, and Staller’s goal is to prolong it as much as possible. The game total domination number is the number of chosen vertices when both players play optimally, denoted by [Formula: see text] when Dominator starts the game and denoted by [Formula: see text] when Staller starts the game. If a vertex [Formula: see text] in [Formula: see text] is declared to be already totally dominated, then we denote this graph by [Formula: see text]. A total domination game critical graph is a graph [Formula: see text] for which [Formula: see text] holds for every vertex [Formula: see text] in [Formula: see text]. If [Formula: see text], then [Formula: see text] is called [Formula: see text]-[Formula: see text]-critical. In this work, we characterize some 4-[Formula: see text]-critical graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
41.70%
发文量
129
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信