将宽带光深入扩散介质

Rohin E. McIntosh, Nicholas Bender, A. Yamilov, A. Goetschy, Chia Wei Hsu, Hasan Yilmaz, Hui Cao
{"title":"将宽带光深入扩散介质","authors":"Rohin E. McIntosh, Nicholas Bender, A. Yamilov, A. Goetschy, Chia Wei Hsu, Hasan Yilmaz, Hui Cao","doi":"10.1109/CLEO/Europe-EQEC57999.2023.10232038","DOIUrl":null,"url":null,"abstract":"Waves propagate diffusively through disordered media, such as biological tissue, clouds, and paint, due to random scattering. Recent advances in optical wavefront shaping techniques have enabled controlling coherent light propagation in multiple-scattering samples. We overcome wave diffusion to deliver optical energy into a target region of arbitrary size and shape anywhere inside a strong-scattering system. This is particularly important for applications such as photoacoustic microscopy and optogenetics, where light needs to be deposited deep into biological tissue. For monochromatic light, we previously introduced the deposition matrix (DM) $\\mathrm{Z}(\\omega)$, which maps its input wavefront to the field distribution in the target region [1]. The eigenchannel with the largest eigenvalue provides the wavefront for maximal energy delivery. Since the enhancement is achieved via constructive interference of scattered waves, the optimal wavefront will vary with input wavelength.","PeriodicalId":19477,"journal":{"name":"Oceans","volume":"48 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Delivering Broadband Light Deep into Diffusive Media\",\"authors\":\"Rohin E. McIntosh, Nicholas Bender, A. Yamilov, A. Goetschy, Chia Wei Hsu, Hasan Yilmaz, Hui Cao\",\"doi\":\"10.1109/CLEO/Europe-EQEC57999.2023.10232038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Waves propagate diffusively through disordered media, such as biological tissue, clouds, and paint, due to random scattering. Recent advances in optical wavefront shaping techniques have enabled controlling coherent light propagation in multiple-scattering samples. We overcome wave diffusion to deliver optical energy into a target region of arbitrary size and shape anywhere inside a strong-scattering system. This is particularly important for applications such as photoacoustic microscopy and optogenetics, where light needs to be deposited deep into biological tissue. For monochromatic light, we previously introduced the deposition matrix (DM) $\\\\mathrm{Z}(\\\\omega)$, which maps its input wavefront to the field distribution in the target region [1]. The eigenchannel with the largest eigenvalue provides the wavefront for maximal energy delivery. Since the enhancement is achieved via constructive interference of scattered waves, the optimal wavefront will vary with input wavelength.\",\"PeriodicalId\":19477,\"journal\":{\"name\":\"Oceans\",\"volume\":\"48 1\",\"pages\":\"1-1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Oceans\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEO/Europe-EQEC57999.2023.10232038\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEO/Europe-EQEC57999.2023.10232038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于随机散射,波在无序介质中扩散传播,如生物组织、云层和油漆。光波前整形技术的最新进展使控制多散射样品中的相干光传播成为可能。我们克服了波的扩散,将光能传送到任意大小和形状的目标区域,在一个强散射系统内的任何地方。这对于光声显微镜和光遗传学等应用尤其重要,因为这些应用需要将光沉积到生物组织深处。对于单色光,我们之前引入了沉积矩阵(DM) $\mathrm{Z}(\omega)$,它将其输入波前映射到目标区域的场分布[1]。具有最大特征值的特征通道提供最大能量传输的波前。由于增强是通过散射波的建设性干涉实现的,因此最佳波前将随输入波长而变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Delivering Broadband Light Deep into Diffusive Media
Waves propagate diffusively through disordered media, such as biological tissue, clouds, and paint, due to random scattering. Recent advances in optical wavefront shaping techniques have enabled controlling coherent light propagation in multiple-scattering samples. We overcome wave diffusion to deliver optical energy into a target region of arbitrary size and shape anywhere inside a strong-scattering system. This is particularly important for applications such as photoacoustic microscopy and optogenetics, where light needs to be deposited deep into biological tissue. For monochromatic light, we previously introduced the deposition matrix (DM) $\mathrm{Z}(\omega)$, which maps its input wavefront to the field distribution in the target region [1]. The eigenchannel with the largest eigenvalue provides the wavefront for maximal energy delivery. Since the enhancement is achieved via constructive interference of scattered waves, the optimal wavefront will vary with input wavelength.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信