动物(壳聚糖)提取Cr2O3-TNFs纳米复合材料超声-水热法制备氢能

Ghasaq Z. Alwan, Wisam Jafer Aziz, Raad S. Sabry
{"title":"动物(壳聚糖)提取Cr2O3-TNFs纳米复合材料超声-水热法制备氢能","authors":"Ghasaq Z. Alwan, Wisam Jafer Aziz, Raad S. Sabry","doi":"10.30723/ijp.v20i3.1001","DOIUrl":null,"url":null,"abstract":"In this study, an efficient photocatalyst for dissociation of water was prepared and studied. The chromium oxide (Cr2O3) with Titanium dioxide (TiO2) nanofibers (Cr2O3-TNFs) nanocomposite with (chitosan extract) were synthesized using ecologically friendly methods such as ultrasonic and hydrothermal techniques; such TiO2 exhibits nanofibers (TNFs) shape structure. Doping TiO2 with chromium (Cr) enhances its ability to absorb ultraviolet light while also speeding up the recombination of photogenerated electrons and holes. The prepared TNFs and Cr2O3-TNFs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), and UV-Visible absorbance. The XRD of TNFs showed a tetragonal phase with 6.9 nm of average crystallite size, whereas Cr2O3-TNFs crystallite size was 12.3 nm. FE-SEM images showed that the average particle size of TNFs was in the range of (9-35) nm and UV-Vis absorbance of TNFs showed their energy gap to be 3.9eV while the energy gaps of Cr2O3-TNFs were smaller equal to 2.4 eV. The highest hydrogen production rate for the Cr2O3-TNFs nanocomposite was 4.1ml after 80min of UV exposure. Cr2O3-TNFs have high photocatalytic effectiveness due to their wide ultraviolet light photoresponse range and excellent separation of photogenerated electrons and holes.","PeriodicalId":14653,"journal":{"name":"Iraqi Journal of Physics (IJP)","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Producing Hydrogen Energy Using Cr2O3-TNFs Nanocomposite with Animal (Chitosan) Extract via Ultrasonic and Hydrothermal Techniques\",\"authors\":\"Ghasaq Z. Alwan, Wisam Jafer Aziz, Raad S. Sabry\",\"doi\":\"10.30723/ijp.v20i3.1001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, an efficient photocatalyst for dissociation of water was prepared and studied. The chromium oxide (Cr2O3) with Titanium dioxide (TiO2) nanofibers (Cr2O3-TNFs) nanocomposite with (chitosan extract) were synthesized using ecologically friendly methods such as ultrasonic and hydrothermal techniques; such TiO2 exhibits nanofibers (TNFs) shape structure. Doping TiO2 with chromium (Cr) enhances its ability to absorb ultraviolet light while also speeding up the recombination of photogenerated electrons and holes. The prepared TNFs and Cr2O3-TNFs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), and UV-Visible absorbance. The XRD of TNFs showed a tetragonal phase with 6.9 nm of average crystallite size, whereas Cr2O3-TNFs crystallite size was 12.3 nm. FE-SEM images showed that the average particle size of TNFs was in the range of (9-35) nm and UV-Vis absorbance of TNFs showed their energy gap to be 3.9eV while the energy gaps of Cr2O3-TNFs were smaller equal to 2.4 eV. The highest hydrogen production rate for the Cr2O3-TNFs nanocomposite was 4.1ml after 80min of UV exposure. Cr2O3-TNFs have high photocatalytic effectiveness due to their wide ultraviolet light photoresponse range and excellent separation of photogenerated electrons and holes.\",\"PeriodicalId\":14653,\"journal\":{\"name\":\"Iraqi Journal of Physics (IJP)\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iraqi Journal of Physics (IJP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30723/ijp.v20i3.1001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iraqi Journal of Physics (IJP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30723/ijp.v20i3.1001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究制备并研究了一种高效的水解离光催化剂。采用超声和水热等生态友好的方法合成了氧化铬(Cr2O3) -二氧化钛(TiO2)纳米纤维(Cr2O3- tnfs) -壳聚糖提取物纳米复合材料;该TiO2呈现纳米纤维(TNFs)形状结构。在TiO2中掺杂铬(Cr)增强了其吸收紫外光的能力,同时也加速了光生电子与空穴的复合。采用x射线衍射(XRD)、场发射扫描电镜(FE-SEM)、能量色散x射线能谱(EDX)和紫外可见吸光度对制备的TNFs和Cr2O3-TNFs进行了表征。TNFs的XRD表现为四方相,平均晶粒尺寸为6.9 nm,而Cr2O3-TNFs的晶粒尺寸为12.3 nm。FE-SEM图像显示,TNFs的平均粒径在(9-35)nm之间,其UV-Vis吸光度显示其能隙为3.9eV,而Cr2O3-TNFs的能隙较小,为2.4 eV。紫外线照射80min后,Cr2O3-TNFs纳米复合材料的产氢率最高,为4.1ml。Cr2O3-TNFs具有较宽的紫外光响应范围和良好的光生电子与空穴分离性能,具有较高的光催化效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Producing Hydrogen Energy Using Cr2O3-TNFs Nanocomposite with Animal (Chitosan) Extract via Ultrasonic and Hydrothermal Techniques
In this study, an efficient photocatalyst for dissociation of water was prepared and studied. The chromium oxide (Cr2O3) with Titanium dioxide (TiO2) nanofibers (Cr2O3-TNFs) nanocomposite with (chitosan extract) were synthesized using ecologically friendly methods such as ultrasonic and hydrothermal techniques; such TiO2 exhibits nanofibers (TNFs) shape structure. Doping TiO2 with chromium (Cr) enhances its ability to absorb ultraviolet light while also speeding up the recombination of photogenerated electrons and holes. The prepared TNFs and Cr2O3-TNFs were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), and UV-Visible absorbance. The XRD of TNFs showed a tetragonal phase with 6.9 nm of average crystallite size, whereas Cr2O3-TNFs crystallite size was 12.3 nm. FE-SEM images showed that the average particle size of TNFs was in the range of (9-35) nm and UV-Vis absorbance of TNFs showed their energy gap to be 3.9eV while the energy gaps of Cr2O3-TNFs were smaller equal to 2.4 eV. The highest hydrogen production rate for the Cr2O3-TNFs nanocomposite was 4.1ml after 80min of UV exposure. Cr2O3-TNFs have high photocatalytic effectiveness due to their wide ultraviolet light photoresponse range and excellent separation of photogenerated electrons and holes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信