{"title":"机械健康预后-使用阈值回归的数据驱动方法","authors":"H. Murtaza, A. Mansoor, A. S. Soomro, H. Mushtaq","doi":"10.26692/SURJ/2018.01.0028","DOIUrl":null,"url":null,"abstract":"Machinery health data is the backbone of prognostics. Effective prognostic, from the machinery data, leads towards operational reliability, reduced machinery downtime, cost savings, secondary/catastrophic failures etc. Various methodologies have been adopted by the researchers in an effort to precisely forecast/predict machinery health. In this study, Threshold Regression Methodology has been applied to a machinery vibration data to estimate future health state of machinery. The results show that the proposed method is an effective and reliable approach for data driven prognostics.","PeriodicalId":21859,"journal":{"name":"Sindh University Research Journal","volume":"159 1","pages":"159-164"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machinery Health Prognosis - Data Driven Approach Using Threshold Regression\",\"authors\":\"H. Murtaza, A. Mansoor, A. S. Soomro, H. Mushtaq\",\"doi\":\"10.26692/SURJ/2018.01.0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machinery health data is the backbone of prognostics. Effective prognostic, from the machinery data, leads towards operational reliability, reduced machinery downtime, cost savings, secondary/catastrophic failures etc. Various methodologies have been adopted by the researchers in an effort to precisely forecast/predict machinery health. In this study, Threshold Regression Methodology has been applied to a machinery vibration data to estimate future health state of machinery. The results show that the proposed method is an effective and reliable approach for data driven prognostics.\",\"PeriodicalId\":21859,\"journal\":{\"name\":\"Sindh University Research Journal\",\"volume\":\"159 1\",\"pages\":\"159-164\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sindh University Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26692/SURJ/2018.01.0028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sindh University Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26692/SURJ/2018.01.0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machinery Health Prognosis - Data Driven Approach Using Threshold Regression
Machinery health data is the backbone of prognostics. Effective prognostic, from the machinery data, leads towards operational reliability, reduced machinery downtime, cost savings, secondary/catastrophic failures etc. Various methodologies have been adopted by the researchers in an effort to precisely forecast/predict machinery health. In this study, Threshold Regression Methodology has been applied to a machinery vibration data to estimate future health state of machinery. The results show that the proposed method is an effective and reliable approach for data driven prognostics.