机械健康预后-使用阈值回归的数据驱动方法

H. Murtaza, A. Mansoor, A. S. Soomro, H. Mushtaq
{"title":"机械健康预后-使用阈值回归的数据驱动方法","authors":"H. Murtaza, A. Mansoor, A. S. Soomro, H. Mushtaq","doi":"10.26692/SURJ/2018.01.0028","DOIUrl":null,"url":null,"abstract":"Machinery health data is the backbone of prognostics. Effective prognostic, from the machinery data, leads towards operational reliability, reduced machinery downtime, cost savings, secondary/catastrophic failures etc. Various methodologies have been adopted by the researchers in an effort to precisely forecast/predict machinery health. In this study, Threshold Regression Methodology has been applied to a machinery vibration data to estimate future health state of machinery. The results show that the proposed method is an effective and reliable approach for data driven prognostics.","PeriodicalId":21859,"journal":{"name":"Sindh University Research Journal","volume":"159 1","pages":"159-164"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Machinery Health Prognosis - Data Driven Approach Using Threshold Regression\",\"authors\":\"H. Murtaza, A. Mansoor, A. S. Soomro, H. Mushtaq\",\"doi\":\"10.26692/SURJ/2018.01.0028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machinery health data is the backbone of prognostics. Effective prognostic, from the machinery data, leads towards operational reliability, reduced machinery downtime, cost savings, secondary/catastrophic failures etc. Various methodologies have been adopted by the researchers in an effort to precisely forecast/predict machinery health. In this study, Threshold Regression Methodology has been applied to a machinery vibration data to estimate future health state of machinery. The results show that the proposed method is an effective and reliable approach for data driven prognostics.\",\"PeriodicalId\":21859,\"journal\":{\"name\":\"Sindh University Research Journal\",\"volume\":\"159 1\",\"pages\":\"159-164\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sindh University Research Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26692/SURJ/2018.01.0028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sindh University Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26692/SURJ/2018.01.0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

机械健康数据是预测的支柱。有效的预测,从机器数据,导致运行可靠性,减少机器停机时间,节约成本,二次/灾难性故障等。研究人员采用了各种方法来精确预测机器的健康状况。本研究将阈值回归方法应用于机械振动数据,以估计机械未来的健康状态。结果表明,该方法是一种有效、可靠的数据驱动预测方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machinery Health Prognosis - Data Driven Approach Using Threshold Regression
Machinery health data is the backbone of prognostics. Effective prognostic, from the machinery data, leads towards operational reliability, reduced machinery downtime, cost savings, secondary/catastrophic failures etc. Various methodologies have been adopted by the researchers in an effort to precisely forecast/predict machinery health. In this study, Threshold Regression Methodology has been applied to a machinery vibration data to estimate future health state of machinery. The results show that the proposed method is an effective and reliable approach for data driven prognostics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信