S. Wajid, Malik Sajjad Mehmood, Mansoor Ahmad Baluch
{"title":"镉掺杂氧化钆的电子和带隙结构:基于DFT的理论研究","authors":"S. Wajid, Malik Sajjad Mehmood, Mansoor Ahmad Baluch","doi":"10.53992/njns.v8i1.104","DOIUrl":null,"url":null,"abstract":"The optical uses of Gd2O3 have attracted interest in optoelectronics and have increased its popularity in industry. With the use of density functional theory, the SCF, band structure and density of states of cubic Gd2O3are examined. For this,we create a Gd2O3 supercell with a scaling of (211) andexamine the electronic characteristics such as band gap and DOS by using DFT. The influence of Cd doping on morphologicaland electrical characteristics of Gd2O3 nanoparticles is also described in the current study, and the modified properties of Gd2O3 are subsequently examined at the supercell level by employing DFT. Calculations indicates that SCF is converged with total energy -689.288RY. After the convergence of SCF,a direct band gap has been found by computing the electrical band structure. This paper also show that cd doping has a massive effect on the gadolinium oxide structure. The results of lattice constants are found to be credible. In all polymorphic phases, Gd2O3 is ductile and mechanically stable.","PeriodicalId":19373,"journal":{"name":"NUST Journal of Natural Sciences","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic and Band Gap Structure of Cd-Doped Gadolinium Oxide: A DFT Based Theoretical Study\",\"authors\":\"S. Wajid, Malik Sajjad Mehmood, Mansoor Ahmad Baluch\",\"doi\":\"10.53992/njns.v8i1.104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optical uses of Gd2O3 have attracted interest in optoelectronics and have increased its popularity in industry. With the use of density functional theory, the SCF, band structure and density of states of cubic Gd2O3are examined. For this,we create a Gd2O3 supercell with a scaling of (211) andexamine the electronic characteristics such as band gap and DOS by using DFT. The influence of Cd doping on morphologicaland electrical characteristics of Gd2O3 nanoparticles is also described in the current study, and the modified properties of Gd2O3 are subsequently examined at the supercell level by employing DFT. Calculations indicates that SCF is converged with total energy -689.288RY. After the convergence of SCF,a direct band gap has been found by computing the electrical band structure. This paper also show that cd doping has a massive effect on the gadolinium oxide structure. The results of lattice constants are found to be credible. In all polymorphic phases, Gd2O3 is ductile and mechanically stable.\",\"PeriodicalId\":19373,\"journal\":{\"name\":\"NUST Journal of Natural Sciences\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NUST Journal of Natural Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53992/njns.v8i1.104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUST Journal of Natural Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53992/njns.v8i1.104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electronic and Band Gap Structure of Cd-Doped Gadolinium Oxide: A DFT Based Theoretical Study
The optical uses of Gd2O3 have attracted interest in optoelectronics and have increased its popularity in industry. With the use of density functional theory, the SCF, band structure and density of states of cubic Gd2O3are examined. For this,we create a Gd2O3 supercell with a scaling of (211) andexamine the electronic characteristics such as band gap and DOS by using DFT. The influence of Cd doping on morphologicaland electrical characteristics of Gd2O3 nanoparticles is also described in the current study, and the modified properties of Gd2O3 are subsequently examined at the supercell level by employing DFT. Calculations indicates that SCF is converged with total energy -689.288RY. After the convergence of SCF,a direct band gap has been found by computing the electrical band structure. This paper also show that cd doping has a massive effect on the gadolinium oxide structure. The results of lattice constants are found to be credible. In all polymorphic phases, Gd2O3 is ductile and mechanically stable.