{"title":"关于非简并全纯向量场的局部单一性","authors":"Adolfo Guillot","doi":"10.5802/crmath.100","DOIUrl":null,"url":null,"abstract":"We prove that, in all dimensions, germs of nondegenerate holomorphic vector fields on complex manifolds are univalent in the sense of Palais (semicomplete in the sense of Rebelo), this is, that there exist neighborhoods of their singular points where all their solutions are single-valued. This implies that, in stark contrast with the degenerate case, all germs of nondegenerate holomorphic vector fields give local models for complete holomorphic vector fields on complex manifolds (albeit possibly non-Hausdorff ones). Résumé. On prouve que, en toute dimension, tout germe de champs de vecteurs holomorphe singulier nondégénéré sur une variété est univalent au sens de Palais (semicomplet au sens de Rebelo): en restriction à un voisinage convenable du point singulier, ses solutions n’ont pas de multivaluation. Ceci implique que, à la différence du cas dégénéré, un germe de champ de vecteurs holomorphe non-dégénéré est le modèle local d’un champ de vecteurs holomorphe complet sur une variété complexe (pas nécessairement séparée). 2020 Mathematics Subject Classification. 34M45, 34M35, 57S20, 32M05. Funding. PAPIIT (UNAM, Mexico) grant IN102518. Manuscript received 15th June 2020, revised 22nd July 2020, accepted 23rd July 2020.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the local univalence of nondegenerate holomorphic vector fields\",\"authors\":\"Adolfo Guillot\",\"doi\":\"10.5802/crmath.100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that, in all dimensions, germs of nondegenerate holomorphic vector fields on complex manifolds are univalent in the sense of Palais (semicomplete in the sense of Rebelo), this is, that there exist neighborhoods of their singular points where all their solutions are single-valued. This implies that, in stark contrast with the degenerate case, all germs of nondegenerate holomorphic vector fields give local models for complete holomorphic vector fields on complex manifolds (albeit possibly non-Hausdorff ones). Résumé. On prouve que, en toute dimension, tout germe de champs de vecteurs holomorphe singulier nondégénéré sur une variété est univalent au sens de Palais (semicomplet au sens de Rebelo): en restriction à un voisinage convenable du point singulier, ses solutions n’ont pas de multivaluation. Ceci implique que, à la différence du cas dégénéré, un germe de champ de vecteurs holomorphe non-dégénéré est le modèle local d’un champ de vecteurs holomorphe complet sur une variété complexe (pas nécessairement séparée). 2020 Mathematics Subject Classification. 34M45, 34M35, 57S20, 32M05. Funding. PAPIIT (UNAM, Mexico) grant IN102518. Manuscript received 15th June 2020, revised 22nd July 2020, accepted 23rd July 2020.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.100\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/crmath.100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the local univalence of nondegenerate holomorphic vector fields
We prove that, in all dimensions, germs of nondegenerate holomorphic vector fields on complex manifolds are univalent in the sense of Palais (semicomplete in the sense of Rebelo), this is, that there exist neighborhoods of their singular points where all their solutions are single-valued. This implies that, in stark contrast with the degenerate case, all germs of nondegenerate holomorphic vector fields give local models for complete holomorphic vector fields on complex manifolds (albeit possibly non-Hausdorff ones). Résumé. On prouve que, en toute dimension, tout germe de champs de vecteurs holomorphe singulier nondégénéré sur une variété est univalent au sens de Palais (semicomplet au sens de Rebelo): en restriction à un voisinage convenable du point singulier, ses solutions n’ont pas de multivaluation. Ceci implique que, à la différence du cas dégénéré, un germe de champ de vecteurs holomorphe non-dégénéré est le modèle local d’un champ de vecteurs holomorphe complet sur une variété complexe (pas nécessairement séparée). 2020 Mathematics Subject Classification. 34M45, 34M35, 57S20, 32M05. Funding. PAPIIT (UNAM, Mexico) grant IN102518. Manuscript received 15th June 2020, revised 22nd July 2020, accepted 23rd July 2020.