关于非简并全纯向量场的局部单一性

IF 0.8 4区 数学 Q2 MATHEMATICS
Adolfo Guillot
{"title":"关于非简并全纯向量场的局部单一性","authors":"Adolfo Guillot","doi":"10.5802/crmath.100","DOIUrl":null,"url":null,"abstract":"We prove that, in all dimensions, germs of nondegenerate holomorphic vector fields on complex manifolds are univalent in the sense of Palais (semicomplete in the sense of Rebelo), this is, that there exist neighborhoods of their singular points where all their solutions are single-valued. This implies that, in stark contrast with the degenerate case, all germs of nondegenerate holomorphic vector fields give local models for complete holomorphic vector fields on complex manifolds (albeit possibly non-Hausdorff ones). Résumé. On prouve que, en toute dimension, tout germe de champs de vecteurs holomorphe singulier nondégénéré sur une variété est univalent au sens de Palais (semicomplet au sens de Rebelo): en restriction à un voisinage convenable du point singulier, ses solutions n’ont pas de multivaluation. Ceci implique que, à la différence du cas dégénéré, un germe de champ de vecteurs holomorphe non-dégénéré est le modèle local d’un champ de vecteurs holomorphe complet sur une variété complexe (pas nécessairement séparée). 2020 Mathematics Subject Classification. 34M45, 34M35, 57S20, 32M05. Funding. PAPIIT (UNAM, Mexico) grant IN102518. Manuscript received 15th June 2020, revised 22nd July 2020, accepted 23rd July 2020.","PeriodicalId":10620,"journal":{"name":"Comptes Rendus Mathematique","volume":"15 1","pages":"877-880"},"PeriodicalIF":0.8000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the local univalence of nondegenerate holomorphic vector fields\",\"authors\":\"Adolfo Guillot\",\"doi\":\"10.5802/crmath.100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that, in all dimensions, germs of nondegenerate holomorphic vector fields on complex manifolds are univalent in the sense of Palais (semicomplete in the sense of Rebelo), this is, that there exist neighborhoods of their singular points where all their solutions are single-valued. This implies that, in stark contrast with the degenerate case, all germs of nondegenerate holomorphic vector fields give local models for complete holomorphic vector fields on complex manifolds (albeit possibly non-Hausdorff ones). Résumé. On prouve que, en toute dimension, tout germe de champs de vecteurs holomorphe singulier nondégénéré sur une variété est univalent au sens de Palais (semicomplet au sens de Rebelo): en restriction à un voisinage convenable du point singulier, ses solutions n’ont pas de multivaluation. Ceci implique que, à la différence du cas dégénéré, un germe de champ de vecteurs holomorphe non-dégénéré est le modèle local d’un champ de vecteurs holomorphe complet sur une variété complexe (pas nécessairement séparée). 2020 Mathematics Subject Classification. 34M45, 34M35, 57S20, 32M05. Funding. PAPIIT (UNAM, Mexico) grant IN102518. Manuscript received 15th June 2020, revised 22nd July 2020, accepted 23rd July 2020.\",\"PeriodicalId\":10620,\"journal\":{\"name\":\"Comptes Rendus Mathematique\",\"volume\":\"15 1\",\"pages\":\"877-880\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus Mathematique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/crmath.100\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mathematique","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/crmath.100","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,在所有维数中,复流形上的非退化全纯向量场的细菌在Palais的意义上是单数的(在Rebelo的意义上是半完整的),也就是说,在它们的奇异点的邻域中,它们的解都是单数的。这意味着,与简并情况相反,所有非简并全纯向量场的菌根给出了复杂流形上完全全纯向量场的局部模型(尽管可能是非hausdorff子)。摘要。证明了在任何维数中,流形上的每一个未退化的奇异全纯向量场的胚芽在宫殿意义上都是单价的(在Rebelo意义上是半完全的):在奇点的适当邻近范围内,其解不具有多价。这意味着,与退化的情况不同,非退化的全纯向量场胚是复流形上完全全纯向量场的局部模型(不一定分离)。2019数学科目分类。34M45, 34M35, 57S20, 32M05。Funding)。帕皮特(UNAM,墨西哥)grant IN102518。手稿于2020年6月15日收到,2020年7月22日修订,2020年7月23日接受。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the local univalence of nondegenerate holomorphic vector fields
We prove that, in all dimensions, germs of nondegenerate holomorphic vector fields on complex manifolds are univalent in the sense of Palais (semicomplete in the sense of Rebelo), this is, that there exist neighborhoods of their singular points where all their solutions are single-valued. This implies that, in stark contrast with the degenerate case, all germs of nondegenerate holomorphic vector fields give local models for complete holomorphic vector fields on complex manifolds (albeit possibly non-Hausdorff ones). Résumé. On prouve que, en toute dimension, tout germe de champs de vecteurs holomorphe singulier nondégénéré sur une variété est univalent au sens de Palais (semicomplet au sens de Rebelo): en restriction à un voisinage convenable du point singulier, ses solutions n’ont pas de multivaluation. Ceci implique que, à la différence du cas dégénéré, un germe de champ de vecteurs holomorphe non-dégénéré est le modèle local d’un champ de vecteurs holomorphe complet sur une variété complexe (pas nécessairement séparée). 2020 Mathematics Subject Classification. 34M45, 34M35, 57S20, 32M05. Funding. PAPIIT (UNAM, Mexico) grant IN102518. Manuscript received 15th June 2020, revised 22nd July 2020, accepted 23rd July 2020.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
115
审稿时长
16.6 weeks
期刊介绍: The Comptes Rendus - Mathématique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … Articles are original notes that briefly describe an important discovery or result. The articles are written in French or English. The journal also publishes review papers, thematic issues and texts reflecting the activity of Académie des sciences in the field of Mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信