Inhee Lee, Eunseong Moon, Yejoong Kim, J. Phillips, D. Blaauw
{"title":"具有35- 339nw 10- 300klx光剂量-数字转换器的10mm3光剂量传感IoT2系统","authors":"Inhee Lee, Eunseong Moon, Yejoong Kim, J. Phillips, D. Blaauw","doi":"10.23919/VLSIC.2019.8778007","DOIUrl":null,"url":null,"abstract":"This paper presents a 10mm3 Internet-of-Tiny-Things (IoT2) system that measures light dose using custom photovoltaic cells and a light-dose-to-digital converter (LDDC). The LDDC nulls diode leakage for temperature stability and creates headroom without power overhead by dual forward-biased photovoltaic cells. It also adaptively updates the current mirror ratio and accumulation weighting factor for a low, near-constant power consumption. The system can operate energy-autonomously at $\\gt 500$ lx light level. The LDDC achieves $\\mathrm {a}3 \\sigma $ inaccuracy of ±3.8% and $\\sigma / \\mu $ of 2.4% across a wide light intensity range from 10lx to 300klx while consuming only 35 – 339nW.","PeriodicalId":6707,"journal":{"name":"2019 Symposium on VLSI Circuits","volume":"42 1","pages":"C180-C181"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A 10mm3 Light-Dose Sensing IoT2 System With 35-To-339nW 10-To-300klx Light-Dose-To-Digital Converter\",\"authors\":\"Inhee Lee, Eunseong Moon, Yejoong Kim, J. Phillips, D. Blaauw\",\"doi\":\"10.23919/VLSIC.2019.8778007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a 10mm3 Internet-of-Tiny-Things (IoT2) system that measures light dose using custom photovoltaic cells and a light-dose-to-digital converter (LDDC). The LDDC nulls diode leakage for temperature stability and creates headroom without power overhead by dual forward-biased photovoltaic cells. It also adaptively updates the current mirror ratio and accumulation weighting factor for a low, near-constant power consumption. The system can operate energy-autonomously at $\\\\gt 500$ lx light level. The LDDC achieves $\\\\mathrm {a}3 \\\\sigma $ inaccuracy of ±3.8% and $\\\\sigma / \\\\mu $ of 2.4% across a wide light intensity range from 10lx to 300klx while consuming only 35 – 339nW.\",\"PeriodicalId\":6707,\"journal\":{\"name\":\"2019 Symposium on VLSI Circuits\",\"volume\":\"42 1\",\"pages\":\"C180-C181\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Symposium on VLSI Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/VLSIC.2019.8778007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSIC.2019.8778007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
摘要
本文介绍了一个10mm3的微型物联网(IoT2)系统,该系统使用定制光伏电池和光剂量-数字转换器(LDDC)测量光剂量。LDDC为温度稳定性消除二极管泄漏,并通过双正向偏置光伏电池创造无功率开销的净空空间。它还可以自适应地更新当前镜像比率和累积权重因子,以实现低且接近恒定的功耗。该系统可以在$\gt 500$ lx光级下自主运行。LDDC达到$\mathrm {a}3 \sigma $±3.8的误差% and $\sigma / \mu $ of 2.4% across a wide light intensity range from 10lx to 300klx while consuming only 35 – 339nW.
A 10mm3 Light-Dose Sensing IoT2 System With 35-To-339nW 10-To-300klx Light-Dose-To-Digital Converter
This paper presents a 10mm3 Internet-of-Tiny-Things (IoT2) system that measures light dose using custom photovoltaic cells and a light-dose-to-digital converter (LDDC). The LDDC nulls diode leakage for temperature stability and creates headroom without power overhead by dual forward-biased photovoltaic cells. It also adaptively updates the current mirror ratio and accumulation weighting factor for a low, near-constant power consumption. The system can operate energy-autonomously at $\gt 500$ lx light level. The LDDC achieves $\mathrm {a}3 \sigma $ inaccuracy of ±3.8% and $\sigma / \mu $ of 2.4% across a wide light intensity range from 10lx to 300klx while consuming only 35 – 339nW.