{"title":"无边界钢瓶中的反应-扩散-对流问题","authors":"Rozenn Texier-Picard, Vitaly Volpert","doi":"10.1016/S0764-4442(01)02178-4","DOIUrl":null,"url":null,"abstract":"<div><p>The work is devoted to reaction–diffusion–convection problems in unbounded cylinders. We study the Fredholm property and properness of the corresponding elliptic operators and define the topological degree. Together with analysis of the spectrum of the linearized operators it allows us to study bifurcations of solutions and to prove existence of convective waves. Finally, we make some conclusions about the possible appearance of a “convective instability”.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 12","pages":"Pages 1077-1082"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02178-4","citationCount":"17","resultStr":"{\"title\":\"Problèmes de réaction–diffusion–convection dans des cylindres non bornés\",\"authors\":\"Rozenn Texier-Picard, Vitaly Volpert\",\"doi\":\"10.1016/S0764-4442(01)02178-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The work is devoted to reaction–diffusion–convection problems in unbounded cylinders. We study the Fredholm property and properness of the corresponding elliptic operators and define the topological degree. Together with analysis of the spectrum of the linearized operators it allows us to study bifurcations of solutions and to prove existence of convective waves. Finally, we make some conclusions about the possible appearance of a “convective instability”.</p></div>\",\"PeriodicalId\":100300,\"journal\":{\"name\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"volume\":\"333 12\",\"pages\":\"Pages 1077-1082\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02178-4\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0764444201021784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Problèmes de réaction–diffusion–convection dans des cylindres non bornés
The work is devoted to reaction–diffusion–convection problems in unbounded cylinders. We study the Fredholm property and properness of the corresponding elliptic operators and define the topological degree. Together with analysis of the spectrum of the linearized operators it allows us to study bifurcations of solutions and to prove existence of convective waves. Finally, we make some conclusions about the possible appearance of a “convective instability”.